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ABSTRACT

Beat and downbeat tracking models have improved sig-
nificantly in recent years with the introduction of deep
learning methods. However, despite these improvements,
several challenges remain. Particularly, the adaptation of
available models to underrepresented music traditions in
MIR is usually synonymous with collecting and annotat-
ing large amounts of data, which is impractical and time-
consuming. Transfer learning, data augmentation, and
fine-tuning techniques have been used quite successfully
in related tasks and are known to alleviate this bottleneck.
Furthermore, when studying these music traditions, mod-
els are not required to generalize to multiple mainstream
music genres but to perform well in more constrained, ho-
mogeneous conditions. In this work, we investigate simple
yet effective strategies to adapt beat and downbeat track-
ing models to two different Latin American music tradi-
tions and analyze the feasibility of these adaptations in
real-world applications concerning the data and computa-
tional requirements. Contrary to common belief, our find-
ings show it is possible to achieve good performance by
spending just a few minutes annotating a portion of the data
and training a model in a standard CPU machine, with the
precise amount of resources needed depending on the task
and the complexity of the dataset.

1. INTRODUCTION

Meter tracking means following the pulsating temporal
structure of music from audio signals, which implies iden-
tifying at least beats and downbeats [1]. It is a long-
standing area of research in music information retrieval
(MIR) with applications ranging from automatic DJ mix-
ing [2] to musicological studies [3]. Meter tracking has
gone through a big transformation in the last decade due to
the introduction of deep learning (DL) techniques [4–7],
which brought an improvement in performance as well as
a change in the design paradigm of related methods [8].
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Nowadays, beat and downbeat tracking models rely mostly
on supervised DL [8], and thus become data-driven and re-
quiring large amounts of annotated data to generalize to
different songs, genres or datasets.

This dependence on annotated data poses many chal-
lenges to the widespread use and adoption of such models,
especially for culturally specific music traditions [9–11],
which often lack annotated data as producing annotations
requires culturally-aware expertise. For this reason, off-
the-shelf general-purpose models typically underperform
in these music genres since they are underrepresented in
the datasets used for training. Nevertheless, previous work
on some Latin American music traditions shows that if an-
notations are available, training statistical models can pro-
duce good performance results [12].

Recent works have started to look at beat tracking from
a different perspective. Instead of developing “universal”
models capable of performing equally well across various
music genres (requiring large quantities of labeled data),
recent efforts have shifted towards adapting preexisting
models to succeed on a subset of interest [13], which can
be as restricted as a single musical piece [14, 15]. This
paradigm aligns well with real-world applications, where
it is reasonable for a user to spend a short time producing
a few seconds of annotations to get a good performance.

We apply this idea to the refinement of a meter track-
ing model so that it works well in a particular music genre.
We argue that if the genre presents enough homogeneity in
terms of its instrumentation and metric structure, as is the
case with many Latin American music traditions, it is pos-
sible to adapt meter tracking models to perform notably
well with just a few annotated data points. We explore
this adaptability in terms of data, performance and com-
putational cost. While focusing on two Latin American
music genres, samba and candombe, we study the adap-
tation of a deep learning state-of-the-art model [16] and
compare it with a simpler statistical model [17]. Our con-
tributions are: 1) We perform a detailed analysis on how
much annotated data and computation time in CPU are
needed to achieve close to “full-dataset” performance in
samba and in candombe, including models trained from
scratch and fine-tuned, and compare them to off-the-shelf
models trained with Western music; 2) We propose initial
experiments to understand the homogeneity conditions un-
der which this adaptation will be successful; 3) We open-
source our experiments and provide pre-trained models.



1.1 Other adaptive methods

Existing adaptive methods typically feature some form of
transfer learning or fine-tuning, use deep learning models,
and are concerned with either beat tracking [13–15] or on-
set detection [18]. Fiocchi et al. [13] adapt a beat track-
ing model via transfer learning from Western music to a
dataset of Greek music. The authors explore both recurrent
neural networks (RNNs) and long-short term memory net-
works (LSTMs), plus a dynamic Bayesian network (DBN)
for inference. The model is fine-tuned using a big training
set, though with limited success which the authors attribute
to the challenges of the dataset. Even though this is an in-
teresting approach for exploring the idea of adapting to a
particular music genre, RNNs and LSTMs are known to be
computationally expensive, so in the context of real-world
model adaptation they are a concerning choice.

On the other hand, Pinto et al. [14] and Yamamoto [15]
explore temporal convolutional networks (TCNs), and fo-
cus on the adaptation of models to a particular piece of
interest of the user. These authors showed that is possible
to adapt TCN models using very small quantities of data
(in the order of seconds) to work well, in particular with
musically challenging pieces. Furthermore, the TCN is a
light-weighted model, computationally more efficient.

Finally, Fonseca et al. [18] apply similar ideas to the
adaptation of an onset detection model (also featuring
TCNs) to a Latin American music tradition: maracatu de
baque solto. The authors fine-tune the last layers of the
TCN with just a few seconds of manual annotations, and
show the advantage of instrument-specific models for the
automatic annotation of onsets for musicological studies.

1.2 Latin American Music Traditions

Candombe drumming is a musical tradition from Uruguay
that constitutes an essential part of its popular culture and
African heritage. Its rhythm is structured in 4/4 meter, and
it is played while marching in the streets using three types
of drums of different sizes and pitches: chico, repique,
and piano. Each of these drums has a distinctive rhythmic
pattern and musical role. An additional time–line pattern,
called clave or madera, is shared by the three drums. The
chico drum is the timekeeper; it repeats a one-beat pattern
that establishes the pulse throughout the performance. The
repique drum is the improviser; it alternates clave patterns
and characteristically syncopated phrases. The piano drum
delineates the timeline with distinctive one-cycle patterns
and occasionally interposes ornamented repique-like figu-
rations. The rhythm shares many traits with other musical
traditions of the Afro-Atlantic world. Notably, some of its
rhythmic patterns have strong phenomenological accents
displaced with respect to the metric structure and divide
the rhythmic cycle irregularly with few strokes on the beat.

In parallel, samba is a Brazilian musical genre deeply
rooted in Brazilian culture, and also has African origins.
The word “samba” actually describes a family of differ-
ent subgenres, the most famous arguably being samba de
enredo, partido alto, bossa nova, and pagode. Similarly
to candombe, samba can be played while parading, which

is most common during the festivities of Carnaval. It can
also be performed in more informal settings, in rodas and
bars, or even as a chamber-music-like style. Its rhythm is
commonly perceived in 2/4 meter, and is conveyed by sev-
eral types of percussion instruments –— tamborim, pan-
deiro, surdo, cuíca, agogô, among others. Each instru-
ment has a handful of distinct patterns [19], and more than
one instrument may act as the timekeeper. Because of this
combination of timbres and pitches, the texture of a per-
formance can become very complex. Samba has unmis-
takable characteristics as the strong accent on the second
beat and the development of contrametric structures.

2. METHOD

Following our intuition about the high homogeneity of
candombe and samba as discussed in Section 1.2, our ob-
jective is to understand if it is possible to train meter track-
ing models with small quantities of data from these mu-
sic traditions, and if so, how much is needed. To that
end, we train the models with increasing amounts of an-
notated data, ranging from less than a minute up to nearly
40 min, and compare the performance and computational
cost of each configuration against the others. We contrast
three different training strategies: 1) training the model
from scratch with either candombe or samba snippets; 2)
fine-tuning a model trained with 38 h of data from diverse
datasets of Western music to work on either candombe
or samba; and 3) same as the previous two, but training
the models with data augmentation to artificially increase
the “small data” input. We use a state-of-the-art temporal
convolutional network model [16] for our experiments, as
it presents a good compromise between performance and
computational cost. We contrast this model against off-the-
shelf models trained in Western music. To understand the
adaptability and computational cost of deep learning based
methods, we compare the TCN against another simple yet
effective baseline, a Bayesian model (BayesBeat) [17]. In
the following, we explain our methodology in detail.

2.1 Datasets

We have selected datasets of two different Afro-rooted
Latin American music traditions for our experiments.
First, the Candombe dataset [12, 20], which consists of 35
recordings of candombe drumming, for a total of nearly
2.5 h. Each track contains an ensemble recording of three
to five drummers using different configurations of drums.
Tempo varies greatly and often increases along the perfor-
mance. To represent the samba genre, we use the “acoustic
mixtures” data from the BRID dataset [21]. These cor-
respond to 93 short tracks (about 30 s each) of musicians
playing together rhythm patterns found in samba and two
of its subgenres (samba de enredo and partido alto). Ten
different instrument classes are represented, and two to
four musicians take part in each track. The dataset contains
a variety of tempi; however, tempo remains fairly constant
within each track. In order to consistently train our models
with about the same amount of data from both candombe



and samba, and also to allow the comparison between the
results obtained for both sets, candombe tracks were seg-
mented into non-overlapping 30 s excerpts. In each experi-
ment repetition, we use a sample of 93 candombe excerpts.

We also used six datasets to train the baseline TCN
model: Ballroom [17, 22], Beatles [23], GTZAN [24, 25],
and RWC (Classical, Popular, Jazz) [26, 27]. These are
commonly used in meter tracking tasks and together cor-
respond to over 38 h of audio data. The Ballroom and
GTZAN datasets comprise many diverse music genres
(e.g., waltz, tango, rumba, rock, pop, country, etc.). We
used the loaders from mirdata v0.3.6 [28], except for a cus-
tom loader used with Ballroom.

2.2 Working with small size datasets

For our experiments, in all cases, we first separate train and
test data (80% and 20% of 93 excerpts respectively) to en-
sure a fair assessment of the models. Then, we divide the
training data into six subsets, spanning {4, 9, 18, 37, 55,
74} 30-second tracks. We want to determine how differ-
ently the models adapt to small quantities of data, so we
followed a similar approach to that of [14] to define the
amount of data to be used for training. We select short 10 s
temporal regions at the beginning of the audio excerpts,
along with the corresponding beat and downbeat annota-
tions, and discard the remaining audio portion. Then we
split each of these regions into two adjacent 5 s parts, the
first to be used for training and the second reserved for
validation in the TCN model; alternatively, we use the en-
tire 10 s for training the Bayesian model with off-the-shelf
parameters. Considering that each snippet only lasts 10 s,
these data subsets add up to approximately 40 s, 1.5, 3,
6, 9, and 12 min of annotations, respectively. The ratio-
nale behind this strategy is that given a set of recordings
of such Latin American music traditions in real-world ap-
plications, it would be reasonable to ask a user to annotate
just a few seconds to a few minutes of data; of course, the
less data needed, the better.

Given that we are using very few data points to train the
models, performance is strongly affected by data sampling.
To mitigate this, we repeat all of our experiments 10 times
with different seeds for the random data split generation,
which means that models are trained 10 times with each
of the different subset sizes. Note that selecting the best
strategies for data sampling is out of the scope of this work,
and left to be addressed in the future. Test data are left
uncut, i.e., we use the full 30 s, to keep compatibility with
common model evaluation practices in meter tracking.

2.3 TCN Model

We use in our experiments the TCN multi-task model pre-
sented in [16], in particular the open-source implementa-
tion of [8]. In this work, we focus on meter tracking, and
ignore the tempo estimation head of the network. First, the
TCN estimates the beat and downbeat likelihood. Then,
we use two different implementations of a DBN (DBN-
BeatTracker and DBNDownBeatTracker from madmom
v0.17.dev0 [29]) to infer the final positions of beats and

downbeats respectively. Inferring them separately rather
than jointly led to better results.

2.4 Training strategies

2.4.1 Training from scratch (TCN-FS)

For datasets with high similarity in terms of instrumenta-
tion, rhythmic patterns, and tempo, we expect that we can
train a model from scratch with a few training points that
would work well for most of the data.

Following the explanation in Section 2.2, we train one
model per data subset, and repeat this 10 times with ran-
domly initialized weights and seeds. We also consider the
case in which all annotations are available and include the
analysis of model performance when training with the en-
tire 30-second excerpts. In this situation, we split the 74
train excerpts into train and validation (75%/25%). For ev-
ery strategy, we use a learning rate of 0.005, and reduce it
by a factor of 0.2 if validation loss did not improve after
10 epochs. We train for a maximum of 100 epochs, early
stopping at 20 epochs.

2.4.2 Fine-tuning (TCN-FT)

We also approach the problem of meter tracking in a
culture-specific setting from a “transfer learning” perspec-
tive. Following [13, 14, 18], we adapt a meter tracking
model that was previously trained for a different musical
context. The intuition here is that if the model is first
trained on a large dataset, even if it was built around West-
ern music, it can serve as a good starting point for a model
that is to be tuned for a specific out-of-training music tra-
dition. This is a realistic approach since most of the avail-
able annotated data and trained models are Western-based.
For this purpose, we trained a baseline TCN model on the
Ballroom, Beatles, GTZAN, and RWC datasets. Due to
the nature of its training data, this baseline model has to
cope with many different meters, genres and acoustic con-
ditions, which makes it a good starting point. We fine-
tuned it by using the same training procedure described
previously with the initial learning rate reduced to 0.001, a
fifth of the value used in the FS approach, as in [14].

2.4.3 Data augmentation (TCN-FTA, TCN-FSA)

Data augmentation techniques are useful for artificially in-
creasing the number of training data points, which can be
of great benefit in cases of low or insufficient data such as
ours. In order to evaluate the impact of data augmenta-
tion in our models, we adopted a simple strategy inspired
by [14, 16] in the experiments conducted with the TCN
model: computing the input STFTs with different frame
rates, i.e., varying hop sizes, so as to even out the distribu-
tion of tempi in the train set. Instead of randomly sampling
from a normal distribution around the annotated tempo, we
selected a set of frames rates ±2.5% and ±5% around its
value. This allowed us to increase our sample size five-fold
while maintaining the same amount of annotation effort.
Models obtained with the data augmentation procedure are
labeled TCN-FSA and TCN-FTA, for the training strate-
gies described in Sections 2.4.1 and 2.4.2.
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Figure 1: Performance of different model and training configurations. Label “all” indicates fully-annotated dataset.

2.5 Baselines

We include two types of baselines. Firstly, the BayesBeat
statistical model [17] is used as reference to the adapt-
ability and computational cost of the TCN. It has fewer
parameters, thus training is faster. The second type of
baselines are three off-the-shelf models—a Signal Process-
ing technique, and two neural networks trained on West-
ern music—; they illustrate the need for tailor-made solu-
tions/adaptations in our context. Details presented below.
BayesBeat. This is based on the dynamic bar pointer
model [30], and it simultaneously estimates beats, down-
beats, tempo, meter, and rhythmic patterns, by express-
ing them as hidden variables in a hidden Markov model
(HMM). An observation feature based on the spectral flux
is computed from the audio signal and an observation
model uses Gaussian mixture models (GMM) that are fit-
ted during training to the feature values of each bin in a
one–bar grid, so that rhythmic patterns are learned. Several
patterns can be modeled, though one pattern is assumed to
remain constant throughout the audio signal.

BayesBeat has a few hyperparameters that the user
should choose depending on the music. Those are the num-
ber of rhythmic patterns, the type of feature to use (e.g.,
using only low, or low and high frequencies), and the fea-
ture grouping (e.g., how to compute the rhythmic pattern
clusters), the tempo range, and whole note subdivisions. In
[17], it is reported that using two separate frequency bands
(≷ 250 Hz) helps finding the correct metrical level and is
beneficial for beat and downbeat tracking. But, consider-
ing more frequency bands did not improve the results [17].
According to [31], using one rhythmic pattern per rhythm
class is usually enough to achieve a good performance and
provides the best results in most cases. Following this, we
use one rhythmic pattern and two frequency bands.
Off-the-shelf baselines. We use the joint beat and down-
beat tracking model of Böck et al. [4] as per its implemen-
tation in madmom v0.17.dev0 [29]. It consists of an LSTM-

based model trained in ten datasets spanning Western gen-
res, and Carnatic, Cretan and Turkish music excerpts. We
also include the beat tracker from Ellis [32], which esti-
mates a global tempo and then uses dynamic programming
to find the best set of beats that reflect such tempo. As a
final baseline, we include the TCN of Section 2.3 trained
with the Western datasets from Section 2.1 (TCN-BL).

2.6 Evaluation metrics

We use as our main metric F-measure [33], along with
the continuity-based metrics [34, 35] CMLt (“correct met-
rical level”) which corresponds to the ratio between correct
and annotated beats, and AMLt (“allowed metrical level”)
which accepts phase errors of half a beat period or oc-
tave errors in estimation. For the computational cost of
the models, we simply report the time they take to train by
using in-build timing functions in the code.

3. EXPERIMENTS AND RESULTS

3.1 Performance of models

Figure 1 shows the F-measure results for the TCN mod-
els trained for candombe and for samba with different
amounts of data using each of the training strategies, as
well as BayesBeat, computed as the bootstrapped results of
ten experiments (95% confidence) with different random
seeds for each combination of model and data amount.

A first striking observation is that for both beats and
downbeats, the performance curve for most models has a
small positive slope, which means it is indeed possible to
nearly achieve best model performance (which would re-
quire training with full dataset) by just training with few
samples. This is particularly true for the estimation of beat,
for which models rapidly reach F-measure scores above
80% with less than a minute of data in both candombe and
samba for almost all configurations. This is an interesting



Candombe Samba
Model Beat Downbeat Beat Downbeat

CMLt AMLt F CMLt AMLt F CMLt AMLt F CMLt AMLt F
BayesBeat_0.67 95.0 95.0 96.1 82.2 92.0 81.7 70.5 74.2 78.8 57.4 72.9 57.9
BayesBeat_12.33 99.6 99.6 99.6 99.8 99.8 99.4 93.5 96.0 96.7 92.5 94.9 92.9
BayesBeat_all 98.6 98.6 98.9 98.8 98.8 98.4 94.0 96.0 96.9 92.0 95.3 92.5
TCN-FSA_0.67 96.1 96.2 96.4 87.7 90.9 87.8 83.4 86.3 87.7 60.7 80.7 73.2
TCN-FSA_12.33 98.1 98.1 98.1 93.9 96.3 93.4 94.3 95.7 96.9 91.1 95.0 93.8
TCN-FSA_all 99.0 99.3 99.1 99.2 99.6 98.6 95.7 98.2 98.1 95.7 98.0 96.4
TCN-FTA_0.67 99.2 99.2 99.1 93.5 96.8 92.8 92.9 95.7 96.2 69.4 90.0 82.3
TCN-FTA_12.33 99.6 99.6 99.4 96.3 99.7 95.5 95.8 97.2 98.0 92.5 96.9 95.6
TCN-FTA_all 99.5 99.5 99.3 99.3 99.8 98.8 97.3 98.7 98.7 96.7 97.2 97.5
TCN-BL 11.1 18.7 15.9 14.9 31.9 4.1 46.5 65.6 60.0 5.9 52.5 9.6
Ellis [32] 34.8 38.1 38.0 - - - 82.3 87.6 87.1 - - -
Böck [4] 11.7 14.4 11.5 26.7 40.3 0.5 46.9 76.0 66.4 5.2 66.6 2.0

Table 1: Mean F-measure (F) and continuity scores (CMLt, AMLt) in beat and downbeat tracking tasks across both genres.

result, meaning that not much gain in performance is ex-
pected with the increase of annotations for such datasets.
An end-user could annotate less that a minute of data and
yet obtain decent performances. The same holds for down-
beat in candombe, but not in samba. In the latter, there is
a clear gain in adding more data, which has to do with the
differences between the two rhythms, as discussed below.

Differences between candombe and samba. Observing
the results in Figure 1, we see that the models tend to re-
quire more data to achieve better performance on samba
than on candombe, and the uncertainty about the perfor-
mance for samba is larger. Our intuition behind this result
is that, as mentioned in Section 1.2, because samba has a
bigger combination of timbres and pitches than candombe,
the decision of what snippets to annotate (i.e., the sam-
pling) might be more critical for the former than for the
latter, e.g., ensuring timbre representation.

Best model configuration. The best performing configu-
ration for beat and downbeat tracking in both music tradi-
tions is the fine-tuned TCN model with data augmentation
(FTA). Particularly, data augmentation produced signifi-
cant improvement in performance for downbeat tracking
in samba. Interestingly, for the adaptive setting concerned
in this work, the BayesBeat baseline is competitive with
the TCN model, especially considering the computational
cost (see Section 3.2).

Comparison with off-the-shelf benchmarks. Table 1
shows the performance of the TCN and the BayesBeat
baseline for different data subsets, namely the smallest and
largest subsets, and the full dataset. It also shows the per-
formance of the three off-the-shelf baselines explained in
Section 2.5. In alignment with previous works [12, 21],
the models trained with Western music (TCN-BL and
Böck [4]) perform very poorly in candombe, and reach
only about 66% F-measure in samba, both significantly
lower than the performance of the same models in Western
music genres. The model of Ellis [32] scores considerably
better, but is not consistent in both datasets. This shows
the necessity of adapting meter tracking models to these
music genres, as even the models trained with the smallest
subsets of data (0.67 min) outperform the baselines.

3.2 How much time do the models take to train?

Our analysis is motivated by the adaptation of meter track-
ing models in real-world use cases. For this adaptation to
make sense it has to be done quickly. In this regard, we
estimate the time each model configuration takes in train-
ing, and contrast it with the BayesBeat baseline. Figure 2
shows how the train duration varies with the size of the
train set for samba (very similar results were obtained for
candombe). The TCN takes about the same time in both
samba and candombe, with a minimum of about 100 s for
the smallest subset. Among the TCN configurations, the
most expensive ones use data augmentation. This makes
sense given that more data is used for training. As ex-
pected, the BayesBeat trains significantly faster than the
TCN, taking on average 1.62 s to train with 0.67 min of
data, and being in the order of 50 to 150 times faster than
the TCN when data augmentation is not used. This big gap
in computing time, together with the results of Figure 1
and Table 1, makes BayesBeat an overall good alternative
for adapting meter tracking to these Latin American music.
We observed that all configurations take about the same in-
ference time, around 25 s for the full test set.

0.67 1.5 3.0 6.17 9.17 12.33 all
annotated data (min)

10
0

10
1

10
2

10
3

10
4

tra
in

 d
ur

at
io

n 
(s

)

samba

TCN-FS
TCN-FSA
TCN-FT
TCN-FTA
BayesBeat

Figure 2: Training time for the different amounts of data.

3.3 When can we train with small data?

Our intuition is that the more variability in the data (in
terms of meters, rhythmic patterns and instrumentation),
the harder it is for a model to learn with small data. This
aligns with our experiments in the adaptability of these
methods to samba and candombe, and also agrees with
the musicological insights of Section 1.2. To have a more



quantitative understanding of this, we derived a bar pro-
file for each type of music. First we extract a feature
map from each excerpt using the beat/downbeat annota-
tions to time-quantize a locally normalized onset strength
function [36] at the tatum scale — this was done with the
carat [37] toolbox, considering the tatum duration as one
quarter of the time-span between successive beats. Then,
for each dataset, we summarize these feature maps across
time, which results in a distribution of feature values per
tatum. To allow an analysis of these profiles in different
regions of the spectrum, we compute the onset strength in
two frequency bands (20 Hz to 200 Hz; and > 200 Hz). We
present these distributions as violin plots in Figure 3 for
candombe, samba, and for the Ballroom dataset.

In Figure 3, we verify that for some tatums strength
distributions are concentrated around 1 or 0, indicating a
strong characteristic accent or lack thereof at that point
of the bar respectively. High variance, in its turn, means
“fuzzyness” in the rhythm pattern, which could justify the
difficulty in learning that rhythm, specially with small data.

Samba, which has eight tatums per bar (2/4 meter), is
known for having a strong metrical accent at beat 2, which
we may readily identify in its low-frequency channel at
tatum 5. The first beat also has a high median value but
is less “deterministic” due to its high variance. In turn,
the low-frequency profile of candombe displays a high-
variance downbeat, no accent on beat 2, and strong accents
on beats 3 and 4, but also a strong contrametric accent at
tatum 4. These characteristics could help explain why the
off-the-shelf beat tracking models, which expect beats to
be accented, perform worst on candombe. Looking back
at samba, we see that tatums 2 and 3 show small standard
deviations and correspond to “off” tatums; together with
beat 2, they make three out of eight tatums that exhibit very
small variance in the low channel. In candombe, besides
tatum 4, tatums 2, 3, 7, 8, 9, 14, and 16 also present small
variance. This abundance of “anchor” points could justify
why adaptation in candombe came with little data.

In Ballroom, we clearly see that beats are distinct for
having high strength and low variance in both channels,
whereas the rest of the tatums show no clear trend. Its few
reference points could pose a challenge for learning mod-
els. Furthermore, beat patterns (the combination the four
tatums in-between beats, including the beat itself) are also
indistinguishable from one another, which could aggravate
this matter. To test these observations, we trained a set of
models from scratch for Ballroom using the same method-
ology that for samba and candombe. Results are depicted
in Figure 4. The performance results correlate with the in-
tuition that Ballroom is a more challenging dataset given
that it comprises multiple genres, and also that for learning
beat and downbeat more data would be needed.

4. CONCLUSIONS AND FUTURE WORK

We adapted a meter tracking model using small quantities
of data to work in particular Latin American music tra-
ditions, namely samba and candombe. We showed that,
under certain homogeneity conditions, it is indeed possi-
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Figure 4: TCN-FS performance in Ballroom.

ble to train such models with a few minutes of annotated
data and training cycles, and obtain almost full-dataset per-
formance. This result has promising consequences in real-
world applications, as it opens the possibility of adapting
such models to other music genres with modest labeling
efforts. The most competitive model is a fine-tuned TCN
with data augmentation, whereas BayesBeat is a good op-
tion under computational cost constraints. In the future,
we will investigate rhythm complexity metrics that could
serve to predict the amount of annotated data needed to
adapt meter tracking models to particular music genres.
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