
Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

SONYC-UST-V2: AN URBAN SOUND TAGGING DATASET
WITH SPATIOTEMPORAL CONTEXT

Mark Cartwright1∗, Jason Cramer1, Ana Elisa Mendez Mendez1, Yu Wang1

Ho-Hsiang Wu1, Vincent Lostanlen1,2, Magdalena Fuentes1, Graham Dove1

Charlie Mydlarz1, Justin Salamon3, Oded Nov1, and Juan Pablo Bello1

1 New York University, New York, NY, USA
2 Cornell Lab of Ornithology, Ithaca, NY, USA
3 Adobe Research, San Francisco, CA, USA

ABSTRACT

We present SONYC-UST-V2, a dataset for urban sound tag-
ging with spatiotemporal information. This dataset is aimed for
the development and evaluation of machine listening systems for
real-world urban noise monitoring. While datasets of urban record-
ings are available, this dataset provides the opportunity to investi-
gate how spatiotemporal metadata can aid in the prediction of urban
sound tags. SONYC-UST-V2 consists of 18510 audio recordings
from the “Sounds of New York City” (SONYC) acoustic sensor net-
work, including the timestamp of audio acquisition and location of
the sensor. The dataset contains annotations by volunteers from the
Zooniverse citizen science platform, as well as a two-stage verifica-
tion with our team. In this article, we describe our data collection
procedure and propose evaluation metrics for multilabel classifica-
tion of urban sound tags. We report the results of a simple baseline
model that exploits spatiotemporal information.

Index Terms— Audio databases, Urban noise pollution, Sound
event detection, Spatiotemporal context

1. INTRODUCTION

Often in machine listening research, researchers work with datasets
scraped from the internet, disconnected from real applications, and
devoid of relevant metadata such as when and where the data were
recorded. However, this is not the case in many real-world sensing
applications. In many scenarios, we do know when and where the
data were recorded, and this spatiotemporal context (STC) meta-
data may inform us as to what objects or events we may expect
to occur in a recording. Computer vision researchers have already
shown that STC is helpful in detecting objects such as animals in
camera trap images and vehicles in traffic camera images [1]. We
believe STC may also aid in sound event detection tasks such as ur-
ban sound tagging, e.g Figure 1, by informing us as to what sound
events we may expect to hear in sound recordings. For example,
in New York City you are more likely to hear an ice cream truck
by the park at 3pm on a Saturday in July than you are by a busy
street at rush hour on a Tuesday in January; however, you are more
likely to hear honking, engines, and sirens on that Tuesday. But,
knowledge of a thunderstorm that Saturday afternoon in July would
reduce your expectation to hear an ice cream truck and could also
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Figure 1: Overview of a system that exploits spatiotemporal infor-
mation for urban sound tagging.

help you disambiguate between the noise of heavy rain and that of
a large walk-behind saw. However, few works have exploited this
information for urban sound tagging [2] or even sound tagging in
general. We hypothesize that one of the main reasons for this is the
lack of available data with audio and temporal and spatial metadata.

In this article, we introduce SONYC-UST-V2, a dataset for ur-
ban sound tagging with spatiotemporal information,1 which con-
tains 18510 annotated 10 s recordings from the SONYC acoustic
sensor network and which served as the dataset for the DCASE
2020 Urban Sound Tagging with Spatiotemporal Challenge2. Each
recording has been annotated on a set of 23 “tags”, which was de-
veloped in coordination with the New York City Department of En-
vironmental Protection (DEP) and represents many of the frequent
causes of noise complaints in New York City. In addition to the
recording, we provide identifiers for the New York City block (lo-
cation) where the recording was taken as well as when the record-
ing was taken, quantized to the hour. This information alone can be
used to help a tagging model learn the “rhythm” of the city, but it
can also be used query and join external datasets that can provide
additional contextual information, e.g. weather, traffic, holidays,
land use, city permits, and social data—all of which are available
through rich, public datasets. We hope this data and task can pro-
vide a test bed for investigating these ideas for machine listening.

1Download the data at https://doi.org/10.5281/zenodo.3966543.
2http://dcase.community/challenge2020/task-urban-sound-tagging-

with-spatiotemporal-context.
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2. PREVIOUS WORK

SONYC Urban Sound Tagging (SONYC-UST, referred to from
here on as SONYC-UST-V1) is a dataset for the development and
evaluation of machine listening systems for real-world urban noise
monitoring [3]. It was used for the Urban Sound Tagging chal-
lenge in DCASE 2019, and consists of 3068 audio recordings from
the SONYC acoustic sensor network [4]. This acoustic network
consists of more than 50 acoustic sensors deployed around New
York City and has recorded 150M+ 10-second audio clips since its
launch in 2016. The sensors are located in the Manhattan, Brooklyn,
and Queens boroughs of New York, with the highest concentration
around New York University’s Manhattan campus (see Figure 2).
To maintain the privacy of bystanders’ conversations and prevent
the recording of intelligible conversation, the network’s sensors are
positioned for far-field recording, 15–25 feet above the ground, and
record audio clips at random intervals.

The SONYC-UST-V1 dataset contains annotated training, val-
idation, and test splits (2351 / 443 / 274 recordings respectively).
These splits were selected so recordings from the same sensors
would not appear in both the training and validation sets, and such
that the distributions of labels were similar for both the training and
validation sets. Finally, the test set is not disjoint in terms of sen-
sors, but rather it is disjoint in time—all recordings in the test set
are posterior to those in the training and validation sets.

The recordings were annotated by citizen volunteers via the
Zooniverse citizen science platform [5, 6] and were followed by
a two-step verification by our team in the case of the validation and
test splits. In Zooniverse, volunteers weakly tagged the presence
of 23 fine-grained classes that were chosen in consultation with the
New York DEP. These 23 fine-grained classes are then grouped into
eight coarse-grained classes with more general concepts: e.g., the
coarse alert signals category contains four fine-level categories: re-
verse beeper, car alarm, car horn, siren. Recordings that are most
similar to a small set of exemplary clips from YouTube for each
sound class in our taxonomy were selected for annotation. We refer
the interested reader to [3] for further details about the class taxon-
omy and the similarity measure used for data selection.

3. DATA COLLECTION

Since the release of SONYC-UST-V1, we have continued collecting
audio recordings from our acoustic sensor network and Zooniverse
volunteers have continued to annotate these recordings. SONYC-
UST-V2 includes a total of 18510 annotated recordings from 56
sensors, a small sample of the 150M+ recordings that the SONYC
acoustic sensor network has collected. The method for selecting
which recordings to annotate has evolved over time. Initially, we
sampled recordings as we did for V1, i.e., recordings that were
most similar to a small set of exemplary clips from YouTube for
each sound class in our taxonomy [3]. Subsequently, we sampled
recordings using a batch-based active learning procedure in which
a multi-label classifier was trained with all available annotations at
that time. The model then predicted the class presence for unlabeled
recordings, and recordings with class probabilities above a low fixed
threshold were then clustered with minibatch k-means [7]. For each
class, recordings were evenly sampled from each cluster to obtain a
diverse sample, with more recordings sampled for classes with low
representation in the dataset. Batch sizes typically varied between

Figure 2: SONYC-UST-V2 sensor locations, many of which are in
in Manhattan’s Greenwich Village neighborhood (see inset).

1–2k recordings. We sampled the test set with yet another sam-
pling procedure. For this set, a random sample of 10k recordings
was selected from the set of unlabeled SONYC recordings. This
was reduced to a diverse subset of 1k recordings selected with a
determinantal point process (DPP) using the DPPy package [8] and
OpenL3 embeddings [9] as the representation. This set was reduced
further to adhere to our privacy criteria outlined in Section 4.

Each recording in SONYC-UST-V2 has been annotated by
three different Zooniverse volunteers in the same manner as
SONYC-UST-V1, i.e., on both the presence and proximity of the
23 fine-level and 8 coarse-level urban sound tags from the SONYC-
UST Taxonomy [3].

As in SONYC-UST-V1, a subset of the recordings have an-
notations verified by the SONYC team in a two-step verification
process. To create verified labels, we first distributed recordings
based on coarse-level sound category to members of the SONYC
research team for labeling. To determine whether a recording be-
longed to a specific category for the validation process, we selected
those that had been annotated by at least one Zooniverse volun-
teer. Two members of the SONYC team then labeled each category
independently. Once each member had finished labeling their as-
signed categories, the two annotators for each class discussed and
resolved label disagreements that occurred during the independent
annotation process. Lastly, a single SONYC team member listened
to all of the recordings to ensure consistency across coarse-level
categories and to catch any classes overlooked by the crowdsourced
annotators. 1380 of the recordings have verified annotations—716
recordings from the SONYC-UST-V1 test and validation sets and
664 new recordings which comprise the SONYC-UST-V2 test set.

In SONYC-UST-V2 we continue our practice of defining train-
ing and validation sets that are disjoint by sensor and a test set that is
temporally displaced to test generalization in a typical urban noise
monitoring scenario. While the dataset contains recordings from
2016–2019, only the test set contains recordings from the latter two
thirds of 2019. To capitalize on the effort put into the verified sub-
sets in SONYC-UST-V1, we build upon the existing training and
validation sensor split, growing each, while keeping the V1 split
still intact. However, the SONYC-UST-V1 test set was not limited
to the validation sensor split nor were subsequent crowdsourced an-
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Figure 3: Dataset splits. The sensors in the test set overlap with
both the training and validation sets. The test data is temporally
dislocated from training and validation to test generalizability in
time.

notations limited to recordings in the training sensor split. Thus, we
now have verified annotations for recordings in the training sensor
split and crowdsourced-only annotations for recordings in the vali-
dation sensor split, see Figure 3. All of this data has been included
for completeness. However, when training the baseline model (see
Section 6), we limit the training set to only the crowdsourced anno-
tations in the training sensor split, and the validation set to only the
verified annotations in the validation sensor split. See Figure 4 for
the coarse-level class distribution of these recording splits.

Annotating urban sound recordings is a particularly difficult
task. Sound events may be very distant with low signal-to-noise ra-
tios, yet still audible. In addition, without visual verification, many
sound events can be difficult to disambiguate. To capture this uncer-
tainty, annotators are allowed to provide “incomplete” annotations,
providing only the coarse-level class when they are unsure of the
fine-level class (e.g. “Other/unknown engine”). Due to this difficult
task, the inter-annotator agreement of the crowdsourced annotations
as measured by Krippendorff’s α [10] is rather low (0.36). Thus,
SONYC-UST-V2 includes all of the individual crowdsourced and
verified annotations, and we encourage users of the dataset to ex-
plore annotation aggregation strategies that model and incorporate
annotator reliability. Since that is out of scope of this article, we
use a simple approach of minority vote for our baseline model and
analysis, i.e., a class is marked as present in the aggregate if at least
one annotator marks it present. In previous work with Zooniverse
annotators [11], we have found this strategy increases recall without
significantly decreasing precision. In Table 1, we evaluate Zooni-
verse annotations aggregated with minority vote against the verified
annotations in the test set using the metrics outlined in Section 5.
These results are likely representative of good model performance
when only a simplistic annotation aggregation method is used.

4. SPATIOTEMPORAL CONTEXT (STC) INFORMATION

The unique characteristic of this dataset is the inclusion of spa-
tiotemporal context information, which informs where and when
each example was recorded. To maintain privacy, we quantized the
spatial information to the level of a city block, and we quantized
the temporal information to the level of an hour. We also limited
the occurrence of recordings with positive human voice annotations
to one per hour per sensor. For the spatial information, we have

Figure 4: SONYC-UST tag distribution normalized for each record-
ing split, in decreasing order of frequency in the training split. The
shades of blue indicate how many annotators tagged the class in
a training set recording, i.e., darker shades of blue indicate higher
annotator agreement.

Figure 5: Distribution of dataset recordings per hour of the day,
day of the week, and week of the year.
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provided borough and block identifiers, as used in NYC’s parcel
number system known as Borough, Block, Lot (BBL) [12]. This is
a common identifier used in NYC datasets, making it easy to relate
the sensor data to other city data such as PLUTO [13] and more gen-
erally NYC Open Data [14], which contain information regarding
land use, construction, transportation, noise complaints, and more.
For ease of use with other datasets, we’ve also included the latitude
and longitude coordinates of the center of the block. Figures 5 and
2 are distributions of the recordings in time and space.

5. EVALUATION METRICS

SONYC-UST-V2 includes labels at two hierarchical levels, coarse
and fine (cf. [3] for details about the taxonomy), and models are
evaluated independently against the labels at each level. Since some
of the fine-level classes can be hard to label, even for human experts,
a fraction of the samples in SONYC-UST-V2 only have coarse la-
bels for some sound events. For example, a distant engine sound
may be too ambiguous to label as a small engine, a medium en-
gine or a large enging (i.e., fine labels), but can still tagged with
the coarse label engine of uncertain size. For such cases, we use a
tag coarsening procedure that leverages the hierarchical relationship
between the fine and coarse labels in our taxonomy to obtain perfor-
mance estimates for fine labels in the face of annotator uncertainty
(cf. [3] for further details about this procedure).

For each of the two levels, we compute three metrics: macro-
averaged AUPRC, micro-averaged AUPRC, and label-weighted
label-ranking average precision (LWLRAP) [15]. We use the first
as the primary performance metric, and the second as a secondary
metric to gain further insight into the performance of each system.
Macro-averaged AUPRC provides a measure of performance across
all classes independently of the number of samples per class, while
micro-averaged AUPRC is sensitive to class imbalance.

Finally, LWLRAP measures the average precision of retrieving
a ranked list of relevant labels for each test clip. It is a generaliza-
tion of the mean reciprocal rank measure for evaluating multi-label
classification, which gives equal weight to each label in the test set
(as opposed to each test clip). The metric has been widely adopted
in the DCASE community over the past year.

6. BASELINE SYSTEM

For the baseline model 3, we use a multi-label multi-layer percep-
tron model, using a single hidden layer of size 128 (with ReLU
non-linearities), and using AutoPool [16] to aggregate frame level
predictions. The model takes in as input audio content, spatial con-
text, and temporal context.

Audio content is given as OpenL3 [9] embeddings (with
content type="env", input repr="mel256", and
embedding size=512), using a window size and hop size of
1.0 second (with centered windows), giving us 11 512-dimensional
embeddings for each clip in our dataset. Spatial context is given
as latitude and longitude values, giving us two values for each
clip in our dataset. Temporal context is given as hour of the day,
day of the week, and week of the year, each encoded as a one
hot vector, giving us 83 values for each clip in our dataset. We
z-score normalize the embeddings, latitude, and longitude values,
and concatenate all of the inputs (at each time step), resulting in an
input size of 597.

3https://github.com/sonyc-project/dcase2020task5-uststc-baseline

Estimator: Annotators Model w/ STC Model w/o STC
Level: F C F C F C
Overall
Macro-AUPRC 0.56 0.69 0.44 0.49 0.43 0.49
Micro-AUPRC 0.60 0.75 0.62 0.71 0.62 0.71
LWLRAP 0.62 0.78 0.72 0.83 0.73 0.83
AUPRC
Engine 0.57 0.82 0.57 0.84 0.59 0.84
Mach. imp. 0.35 0.48 0.19 0.32 0.18 0.30
Non-mach. imp. 0.60 0.60 0.58 0.60 0.59 0.61
Powered saw 0.14 0.37 0.16 0.11 0.12 0.12
Alert signal 0.74 0.82 0.45 0.40 0.44 0.39
Music 0.53 0.75 0.41 0.52 0.41 0.54
Human voice 0.78 0.91 0.88 0.92 0.88 0.93
Dog 0.79 0.79 0.26 0.22 0.24 0.23

Table 1: The performance of the Zooniverse annotations (using mi-
nority vote aggregation) and the baseline classifier with and without
STC as compared the the ground-truth annotations for the test split
on the coarse (C) and fine (F) levels.

We use the weak tags for each audio clip as the targets for each
clip. For the training data (which has no verified target), we count a
positive for a tag if at least one annotator has labeled the audio clip
with that tag (i.e., minority vote). Note that while some of the audio
clips in the training set have verified annotations, we only use the
crowdsourced annotations. For audio clips in the validation set, we
only use annotations that have been manually verified.

We train the model using stochastic gradient descent to mini-
mize the binary cross-entropy loss, using L2 regularization (weight
decay) with a factor of 10−5. For training models to predict tags at
the fine level, we modify the loss such that if “unknown/other” is
annotated for a particular coarse tag, the loss for the fine tags corre-
sponding to this coarse tag are masked out. We train for up to 100
epochs, using early stopping with a patience of 20 epochs using loss
on the validation set. We train one model to predict fine-level tags,
with coarse-level tag predictions obtained by taking the maximum
probability over fine-tags predictions within a coarse category. We
train another model only to predict coarse-level tags.

Table 1 presents the results of the baseline model trained with
and without spatiotemporal context. The baseline model’s perfor-
mance is quite low and does not seem to benefit from the inclusion
of STC. However, its inclusion of STC and its aggregation of anno-
tations are both rather naive. We hope this simply provides a start-
ing point for researchers to explore more sophisticated approaches
that better leverage the unique aspects of this data and incorporate
additional contextual data to aid in generalizability.

7. CONCLUSIONS

SONYC-UST-V2 is a multi-label dataset for urban sound tagging
with spatiotemporal context information. It consists of 18510 au-
dio examples recorded in New York City between 2016 and 2019
with weak (i.e., tag) annotations on urban sound classes, as well as
metadata on where and when each audio example was recorded. We
believe STC is a rich source of information for sound tagging that
has yet to be adequately explored and could potentially aid models
in the challenging task of tagging real-world urban sound record-
ings. This dataset is the first of its kind that we are aware of and will
provide researchers with material for exploring the incorporation of
spatiotemporal context (STC) information into sound tagging.

https://github.com/sonyc-project/dcase2020task5-uststc-baseline
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