
MIRDATA: SOFTWARE FOR REPRODUCIBLE USAGE OF DATASETS

Rachel M. Bittner∗1, Magdalena Fuentes∗2,3, David Rubinstein1, Andreas Jansson1

Keunwoo Choi1, Thor Kell1
1 Spotify, USA 2 L2S, CNRS–Univ.Paris-Sud–CentraleSupélec, France

3 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
∗Equal contribution

ABSTRACT

There are a number of efforts in the MIR community
towards increased reproducibility, such as creating more
open datasets, publishing code, and the use of common
software libraries, e.g. for evaluation. However, when it
comes to datasets, there is usually little guarantee that re-
searchers are using the exact same data in the same way,
which among other issues, makes comparisons of different
methods on the “same” datasets problematic. In this paper,
we first show how (often unknown) differences in datasets
can lead to significantly different experimental results. We
propose a solution to these problems in the form of an open
source library, mirdata, which handles datasets in their
current distribution modes, but controls for possible vari-
ability. In particular, it contains tools which: (1) validate
if the user’s data (e.g. audio, annotations) is consistent
with a canonical version of the dataset; (2) load annota-
tions in a consistent manner; (3) download or give instruc-
tions for obtaining data; and (4) make it easy to perform
track metadata-specific analysis.

1. INTRODUCTION

Music Information Retrieval (MIR) systems are often soft-
ware or algorithms which are evaluated and compared
based on their performance according to appropriate met-
rics on chosen datasets. These systems are becoming in-
creasingly complex; reproducing systems presented in aca-
demic publications requires access to the software and
data [23]. As outlined in [23], some of the common ele-
ments of an MIR system are (1) Data (Audio and Annota-
tions) (2) Codecs and Parsing (3) Modeling and (4) Evalu-
ation. The reproducibility of each of these elements poses
challenges, but efforts are being made to reduce potential
inconsistencies.

For evaluation, different implementations of evaluation
metrics can result in substantially different results, moti-
vating the need for mir eval - a common and transpar-

c© Rachel M. Bittner, Magdalena Fuentes, David Rubin-
stein, Andreas Jansson, Keunwoo Choi, Thor Kell. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Rachel M. Bittner, Magdalena Fuentes, David Rubinstein,
Andreas Jansson, Keunwoo Choi, Thor Kell. “mirdata: Software for Re-
producible Usage of Datasets”, 20th International Society for Music In-
formation Retrieval Conference, Delft, The Netherlands, 2019.

ent evaluation software [29]. For modeling, slightly dif-
ferent implementations of the same algorithm can result
in very different results [23]. Recently, this has been mit-
igated by the availability of software with tools for pop-
ular MIR tasks. Some examples are librosa [25] and
essentia [6] - tools for MIR related signal process-
ing, simple models and commonly used algorithms; Scikit-
Learn [28] - tools for training simple machine learning al-
gorithms; and madmom [5] - deep learning and machine
learning models for common MIR tasks such as chord
recognition, beat and downbeat tracking.

It is very difficult to get licenses to distribute music
recordings openly. As a result, the majority of datasets
available do not have freely available audio files; the ex-
change of this data is often done manually, which can re-
sult in varying data versions. When working with pairs
of audio and annotation files, it is important that the au-
dio files used are the same files that were used to create
the annotations. When audio files are released separately
from annotations, unknown differences between the origi-
nal and other versions of the audio can create reproducibil-
ity issues. Websites such as Zenodo 1 and Figshare 2 pro-
vide permanent hosting and versioning of datasets, increas-
ing reproducibility, but many datasets used in MIR are
not available on such websites, and (often unknown) dif-
ferences in data can adversely affect downstream perfor-
mance.

Additionally, the annotations that come with each of
these datasets exist in a huge variety of formats. Among
these formats, some provide very complete information
e.g. in the form of a JAMS file [17, 22], while others
lack crucial information needed to accurately use the data,
such as the time stamps associated with different observa-
tions. Most of the time, researchers write their own code
for parsing the specific annotation files they use for a par-
ticular dataset. This is both inefficient and error-prone;
what was found for evaluation and modeling is also true
for data parsing: small differences in annotation loading
code can result in huge differences in results downstream.
Finally, the pairing of audio and annotation files is often
done manually each time, usually by matching on filename
substrings. In addition to being cumbersome, this can also
lead to mismatched audio and annotation files.

To summarize, obtaining datasets and writing code to

1 https://zenodo.org
2 https://figshare.org



process them is both time consuming and error-prone. As a
result, researchers are less inclined to use multiple datasets
for their task, and instead develop or test their models on
single datasets, reducing the reliability of their results [33].
We believe that the two current biggest blockers of repro-
ducibility in the MIR community are (1) the lack of open
datasets, resulting in a lack of transparency as to the con-
sistency of data across publications and (2) the lack of an
open library for consistently loading annotations in various
formats in common datasets.

In this paper, we introduce an open source library,
mirdata, which provides tools for using common MIR
datasets. We aim to create a useful tool for researchers,
which will increase reproducibility, and facilitate and en-
courage the use of several datasets for evaluation. In par-
ticular, it contains tools for loading dataset-specific anno-
tations in a consistent manner, validating if a dataset copy
the user has is consistent with a canonical version of the
dataset, downloading datasets, and linking audio and an-
notation files along with track level metadata. We demon-
strate the need for this tool by highlighting inconsistencies
in common practices when loading annotations and in the
data itself (annotations and audio) for three popular MIR
datasets, namely iKala, Salami, and the Beatles dataset.

The library is publicly available on Github at github.
com/mir-dataset-loaders/mirdata.

2. RELATED WORK

Data utility libraries exist for other fields such as text,
video and image analysis [1,10,27,28] which allow a user
to download a dataset and load it into memory for ease
of use in experimentation and consistent results. Tensor-
Flow [1], a deep learning framework, includes a variety
of datasets covering images, text, language translation and
video 3 . In order to ensure the integrity of the data, Ten-
sorFlow hard codes expected file sizes and SHA256 check-
sums of each file in their library, as well as paths of the
data included with the dataset. If the expected values do
not match what is downloaded, the local dataset is not con-
sidered valid and is not available for usage in the library.

Scikit-Learn [28], a popular machine learning library
for Python, includes their own set of dataset loading util-
ities 4 . Some small datasets, known as “toy datasets”, are
included directly in the library. Larger datasets, known
as “real-world datasets” are downloaded and stored in a
“data home” directory on the local machine. Like Tensor-
Flow, Scikit-Learn checks for dataset integrity based on a
SHA256 checksum, but only checks the downloaded zip or
tar file itself. This approach requires that users download
the entirety of the Scikit-Learn library in order to use the
dataset loaders.

MLDatasets 5 acts as a specification for how datasets
should be managed. DataDeps [36] specifies dataset meta-
data that conforms to a management system. This method
allows for multiple people to maintain their own dataset

3 www.tensorflow.org/datasets/datasets
4 https://scikit-learn.org/stable/datasets
5 https://github.com/JuliaML/MLDatasets.jl

repositories or for a single organization to set up multiple,
independent libraries, each for one dataset.

There are few examples of dataset utility libraries for
music. However, the python library Nussl [19] for source
separation contains some dataset utilities. Unlike the other
libraries previously mentioned, Nussl does not include
any utilities for dataset retrieval and expects the user to
have the datasets locally on the machine before use. How-
ever, it includes expected checksums for the dataset audio
and logic to check for validity and existence of the dataset
as well as simple utilities for loading the data.

Software also exists for loading particular types of
(music-centric) annotations, including pretti midi 6

for MIDI data, JAMS [17] for data released in JAMS for-
mat, and Music21 7 for MIDI and MusicXML data. When
annotations are released in these formats, custom loading
code is less necessary. However, many annotations are re-
leased in other formats and require custom loading code.

3. AUDIO FILES IN MIR DATASETS

Datasets in MIR suffer from a unique constraint: most
music is protected under copyright. Datasets which are
built on copyrighted materials are not typically available
for open download. There are several common levels of
access for the audio files for different MIR datasets:

1. Open Access

2. Restricted Access (e.g. password protected)

3. “Do it yourself” Access (e.g. YouTube links)

4. No Access

We surveyed 128 MIR datasets from the “Audio Con-
tent Analysis” website 8 in April 2019 and determined
their access levels. By our estimate, 80 were “open ac-
cess”, 19 were “restricted access”, 15 were “DIY” Ac-
cess, 14 were “no access”, meaning that 22.8% of the total
list is not openly available. These limited access datasets
include historically popular datasets such as RWC [13],
AudioSet [12], CAL10k [32], the Beatles dataset [16],
iKala [8], the Million Song Dataset [2], and Salami [31].

The more restrictive the access level, the more room
there is for “dataset telephone”; when it is difficult to ac-
cess a particular dataset from a common repository, re-
searchers may share their personal copies with each other,
which may contain perturbations from when they first re-
ceived it. Additionally, since the audio and annotations
are sometimes released separately, if the audio is incorrect,
the annotations will not correspond to the audio files, re-
sulting in inconsistencies during model development and
evaluation. As a result, researchers are performing experi-
ments and computing metrics on datasets they believe are
the same as others versions, but may be quite different in
reality.

6 github.com/craffel/pretty_midi
7 http://web.mit.edu/music21/doc/index.html
8 https://www.audiocontentanalysis.org/

data-sets/



In an ideal case, the audio files used for a dataset should
be the same as those used to create the annotation files.
There are a number of popular datasets for which the au-
dio is difficult to obtain. For example, the 7-digital preview
clips of the million song dataset [2] have often been used
for music classification tasks. While the clips were pre-
viously available through an API, it has since been shut
down and the clips are no longer available. In the Beat-
les dataset [16], audio is not released, but instead, catalog
numbers and release years of the albums used are provided
to prevent differences in audio versions used. Regardless,
we found that different versions of the dataset have been
used by researchers (see Section 4.1). In the case of Au-
dioSet [12], audio is provided in the form of YouTube
video identifiers, adding a new challenge in data repro-
ducibility. However, the availability of the linked YouTube
videos changes over time, and accessibility varies by coun-
try.

4. EXPERIMENTS - WHY A COMMON TOOL IS
NEEDED

Differences in audio or annotations, or in the code used to
load data into memory can have a huge impact on down-
stream results. In this section, we examine the effect of real
differences we found on evaluation metrics in instances of
three popular MIR datasets.

4.1 The Beatles Dataset

The Beatles dataset [16] contains annotations for beats,
downbeats, sections, and chords for the nearly entire Beat-
les’ collection. However, as the audio is copyrighted, only
the annotations are released as part of the dataset. The re-
searchers are asked to use their personal copy of the Beat-
les’ catalog and match the audio files with the annotations.

The annotations were created using a particular version
of the audio, and they may not correspond well with other
versions. For this dataset in particular, it is quite easy to
end up with different versions of the same Beatles track,
since there are several releases of every album, including
remastered versions.

To evaluate these potential differences, we first com-
pared checksums across four different researcher’s copies
of the audio files corresponding to the Beatles dataset. Out
of the four versions, three had identical checksums, while
one had invalid checksums on every single audio file, in-
dicating that the audio is completely different between the
two versions. Upon further examination of the differences,
we found inconsistencies in the number of channels, the
duration, and the average RMS of the audio files between
the two versions.

The differences go even further than channels, duration
and volume. In Figure 1, we first normalize a pair of audio
files to have the same peak level and compute the absolute
difference in their spectrograms. In the low frequencies,
in particular, there are major differences between the fre-
quency content of the two versions, despite sounding sim-
ilar.

0 5 10 15 20 25 30
Time (sec)

0

10000

20000

Fr
eq

ue
nc

y 
(H

z)

0.00

0.25

0.50

0.75

1.00

Figure 1. Normalized absolute difference between two
spectrograms of the first 30 seconds of “Across the Uni-
verse” computed on audio files from two versions of the
Beatles dataset audio.

0.6 0.8 1.0
Score

seg

overseg

underseg

majmin_inv

majmin

mirex

root

V1
V2

0.5 1.0
Score

sevenths_inv

sevenths

tetrads_inv

tetrads

triads_inv

triads

thirds_inv

thirds

Figure 2. Chord metrics for chord estimates computed on
two different versions of the Beatles audio, compared with
the Beatles dataset reference chord annotations.

Next, we ran a chord recognition algorithm [21] on the
two different versions of the audio collection, and com-
puted the standard chord recognition metrics as imple-
mented in mir eval using the dataset’s (public) refer-
ence chord annotations. The differences in the metrics
are shown in Figure 2. While only one of these metrics
had statistically significantly different results (“overseg”,
according to a paired t-test), we see that the same chord
recognition algorithm produces results which are different
enough to affect the metrics.

4.2 The iKala Dataset

The iKala dataset [8] is commonly used for melody esti-
mation, vocal activity detection, and source separation. It
contains isolated vocals and instruments (provided as left
and right channels of a stereo audio file), along with vocal
f0 annotations and lyrics.

We performed the same checksum experiment as for the
Beatles dataset and compared checksums for four different
researcher’s copies of the iKala dataset. We found that all
four versions (audio and annotations) were identical.

One challenge with the iKala dataset is that the vocal
f0 annotations are provided as newline-separated files with
the pitch, but without timestamps, which must be inferred
upon load. On the dataset’s website, they state that the hop
size is 0.032 seconds, but it does not state the alignment
of the first time frame (left aligned or center aligned). The
dataset’s website also provides code for loading the anno-
tation files, which uses a different hop size of 0.03125 sec-
onds and center aligned frames (with the first time stamp



0 2 4
Time (sec)

300

400

500
Fr

eq
ue

nc
y 

(H
z)

26 28 30
Time (sec)

200

300

400

500

Fr
eq

ue
nc

y 
(H

z)

Melodia Reference: 32 ms hop Reference: 31.25 ms hop

Figure 3. iKala reference annotations loaded using two
different hop sizes (32 ms and 31.25 ms) versus the output
of Melodia. (Left) the first 5 seconds of the track. (Right)
the last 5 seconds of the track.

at 0.5 * hop seconds).
To see how users infer the iKala time stamps, we per-

formed a search of public code on Github.com for code
which loads the iKala pitch annotations. We found 5
unique ways of loading the time stamps, consisting of 3
different hop sizes (0.032 s and 0.03125 as listed on the
dataset website, and 0.032017, inferred from the duration
of the audio files), and two different alignments (left and
center). By far, the most common combination was using
a hop size of 0.032 s and left aligned frames.

The differences in hop size have a major effect on the
alignment of the audio and the annotation, especially over
time. Figure 3 shows an example of the annotations loaded
with two of the hop sizes, and the estimate of a melody
extraction algorithm (Melodia [30]) for comparison. In the
first 5 seconds, the differences are small, but in the last 5
seconds, we see a visible misalignment between the loaded
annotations and the audio.

To investigate the severity of these differences, we ran
two melody extraction algorithms, Melodia [30] and Deep
Salience [3], on the iKala audio. We then compute melody
evaluation metrics using mir eval with reference times
computed using the three different hop sizes, h = 32 ms,
h = 32.017 ms and h = 31.25 ms, using left aligned
frames. In Figure 4, we show boxplots of the results across
tracks in the dataset for each of these reference hop sizes.
The results for different hop sizes are quite different, and
drastically so for the smallest hop size, 0.03125 s. Even
the difference between h = 32 and h = 32.017 in Overall
Accuracy is substantial for both datasets - a difference that
is historically enough to claim state of the art over another
algorithm. A paired T-test shows statistically significant
differences for all pairs of hop sizes for each metric, with
the exception of Voicing Recall for h = 32 and h = 32.017

Next, we compute the melody metrics for the same
melody extraction algorithms using a hop size of h = 32
ms and compare left vs center aligned frames in the ref-
erence. Figure 5 shows the results per track of the two
different reference alignments. The difference in metrics is
smaller than for the hop size differences, but left alignment
is statistically significantly worse than right alignment for
Overall Accuracy and Raw Pitch Accuracy under a paired
T-test.

0.00 0.25 0.50 0.75 1.00
Score

Overall Accuracy

Raw Pitch Accuracy

Voicing Recall

Melodia

32
32.02
31.25

0.00 0.25 0.50 0.75 1.00
Score

Deep Salience

Figure 4. Melodia and Deep Salience melody metrics
when evaluated against iKala’s reference data loaded with
3 different hop sizes.

0.25 0.50 0.75 1.00
Score

Overall Accuracy

Raw Pitch Accuracy

Voicing Recall

Melodia

Left
Center

0.25 0.50 0.75 1.00
Score

Deep Salience

Figure 5. Melodia and Deep Salience melody metrics
when evaluated against iKala’s reference data loaded with
left and center-aligned time stamps.

This begs the question: which is the correct way to load
the timestamps? Since it is quite unlikely that an incor-
rectly time aligned reference would produce higher scores
than a correct alignment, it is likely that, despite the norm
of using left-aligned frames, the annotations are intended
to have center aligned timestamps. Indeed, if we look at
a specific example of left vs. center aligned timestamps
for a short excerpt compared with two different algorithm
estimates, as in Figure 6, we see that the reference is bet-
ter aligned with both estimates when using center aligned
time frames. Note that in Figure 4, the reference hop of
32.02 ms resulted in higher metrics than the hop of 32 ms
(both with left aligned frames), and a 32 ms hop with cen-
ter aligned frames has higher metrics than all of the left-
aligned hops. The data loaded with a hop size of 32.02
ms starts off misaligned but over time, approaches a center
alignment, explaining the “better” score with this incorrect
hop size.

The shocking result of this set of experiments is that
every single example we found publicly – including the
code found on the dataset’s website – appears to be loading
the f0 data incorrectly, either with an incorrect hop size or
an incorrect alignment - no example we found had both a
hop size of 32 ms and center alignment.

4.3 Salami Dataset

The Salami dataset [31] is a popular dataset used for music
structural segmentation. It consists of 1359 tracks across



300

350

400

450
Fr

eq
ue

nc
y 

(H
z)

Melodia Tolerance
Reference: Left Aligned
Reference: Center Aligned

10.0 10.2 10.4 10.6 10.8
Time (sec)

300

350

400

450

Fr
eq

ue
nc

y 
(H

z)

Deep Salience Tolerance
Reference: Left Aligned
Reference: Center Aligned

Figure 6. Left and center aligned time stamps for a track in
iKala versus algorithm estimates from Melodia and Deep
Salience. The dashed lines show the distance from the es-
timate where the algorithm would be considered correct in
the standard melody extraction metrics.

a wide variety of genres, namely classical, jazz, popu-
lar, world, among others. Each track has annotations of
‘coarse’ and ‘fine’ segments, and among the annotated
files, a subset of 884 tracks was annotated by two distinct
annotators. The complete set of annotations was released
in version 2.0 of the dataset, increasing the volume of the
dataset with respect to previous versions. For instance,
from version 1.9 to 2.0 additional annotations related to
539 tracks were added, 390 with multiple annotations and
189 with single annotations. Both versions are available in
the dataset’s main repository. However, as in other cases
when a dataset is updated, there is no centralized version
control that is transparent and ensures the awareness of the
community to these changes.

Data-driven models are increasingly popular for ad-
dressing MIR tasks, including the task of boundary detec-
tion using the Salami dataset [15, 35]. One of the main
reproducibility-related issues about data-driven models is
their training, in particular, the amount of annotated data
is crucial. When using Salami, it is important to avoid us-
ing an old version of the annotations, which could have a
negative impact in a model’s performance in comparison
with the same model trained on the newest version of the
dataset. In particular, if different data is used for training
two different models with the aim of comparing their per-
formance afterward, it is difficult to isolate possible causes
of performance differences. An example of this situation is
shown in [11], where the authors use a different subset of
Salami than previous works, obtaining substantially differ-
ent results when intending to re-implement other authors’
model (e.g. 0.246 instead of the previously reported 0.523
F-measure with a ±0.5 s tolerance window).

Another possible source of inconsistency with the use
of this dataset relates to contributions from people other
than the dataset creators. The authors in [24] manually
edited 171 of the annotations in version 2.0, to correct for-
matting errors and enforce consistency with the annotation
guide proposed by the dataset creators. However, this “cor-
rected” version of the annotations was not included in the
dataset’s main repository. This third version of annotations
is used in recent works [24, 34]; comparison of systems
without awareness of the difference with the version 2.0 re-
leased annotations may lead to differences in performance
that are beyond models’ design.

5. MIR DATASET LOADERS

In this section, we describe the mirdata python library,
our proposed solution to the current reproducibility is-
sues with dataset versions and loaders. A driving philos-
ophy of this library is to work with the imperfect situa-
tion we are faced with, with regards to the limited open-
ness of MIR data. In an ideal scenario, all data would
be freely sharable and version controlled; since this is not
the case, we do our best to create tools to maximize re-
producibility given the current constraints. Most impor-
tantly, we aimed to create a clean, transparent and easy to
use interface to encourage reuse and contributions. The
first release of the library will include loaders for Orch-
set [7], iKala [8], MedleyDB Melody and Pitch subsets [4],
the Beatles dataset [16], Salami [31], the Million Song
Dataset [2], Medley Solos-DB [18], RWC [9, 13, 14, 20],
DALI [26], and GuitarSet [37].

5.1 Dataset Indexes and Checksums

Datasets, by their definition, are collections of data. In the
case of MIR datasets, the data is often a collection of sep-
arate files, some of which correspond to e.g. a particular
audio file. For example, the Beatles dataset contains four
separate text files containing chord, beat, section, and key
annotations for each audio file. Since each of these four
annotation files are related to the same audio file, it is desir-
able to have a common way of linking them. In mirdata,
we use a dataset index to link related files, in the form of a
JSON file. This index contains a unique identifier for each
group (for example, the name of the audio file), which is
mapped to its corresponding file paths and their expected
checksums, for example:

{
"track1": {

"audio": [
"example/audio/track1.wav",
"912ec803b2ce49e4a541068d495ab570"

],
"annotation": [

"example/annotations/track1.csv",
"2cf33591c3b28b382668952e236cccd5"

]
},
...

}

The use of an index for each dataset is advantageous for
a number of reasons. First, it groups related data files in



a transparent way, avoiding audio-annotation pairing mis-
takes, and removing the need for custom filename sub-
string matching per dataset. Second, it gives a version-
controlled record of all expected files in the dataset, pre-
venting inconsistencies due to missing or extra files; we
can check if all the expected files are present in a local copy
of a dataset, and we load data to memory based on the in-
dex, ignoring files not included in it. Finally, it provides a
way to verify if a local copy of a dataset is consistent with
a canonical version on a file-by-file basis.

For each dataset, we also provide a validate()
function, which checks for the existence of files locally and
compares the expected checksums with checksums of the
local copy. A checksum is a representation of a digital file
similar to a fingerprint and usually computed by taking a
hash of the bits in a file. The smaller (in size) represen-
tation created allows for efficient file comparisons at the
bit level. If two files have the same checksum then a user
can assume that the two files are exactly the same with
high confidence. If the checksums between two files differ
or the computed checksum is different from an expected
checksum, then the user is at a minimum aware of discrep-
ancies and can take appropriate action. In the mirdata
use case, checksums allow users who have a local copy of
a dataset to know whether or not they are using the same
data as others, simply by running the validation function.

Note that there is not always one “correct” version of a
dataset, so it is difficult to decide which version of a dataset
should be used to create the reference checksums. For this
library, we compute checksums on the version that is as
close to the “original” as possible, for example by obtain-
ing a version from dataset creators.

5.2 Dataset Downloading

It can often be difficult or unclear how to get access to
a particular dataset, and same data often exists in multi-
ple places and may not be identical. In mirdata, we
provide a download() function for each dataset. When
data is openly available online, the function automatically
downloads the data, and this version of the data is same the
version used to create the checksums. When the data has
been downloaded, we run validation to ensure it matches
and warn the user if not (e.g. in the case of an incomplete
download). When data is not openly available online, we
provide instructions for how to obtain the data (e.g. by re-
questing access on a particular website). Once the data has
been obtained, the user can then run validation to ensure
the data is consistent.

5.3 Annotation Loaders

As highlighted previously, differences in implementations
for loading annotation data to memory can have big effects
on the resulting data. In mirdata, we remove the need
for users to manually write loaders per dataset and annota-
tion type by providing functions for loading all annotations
for each dataset. These implementations are shared and
transparent, allowing users to permanently correct mis-
takes in the way data is loaded.

As an example, for some of the beat annotations in the
Salami dataset, the beat position is missing for only a few
observations. These missing positions can be inferred from
the neighboring information (e.g. beats 1 and 3 have la-
bels, and the one in between is absent), and in mirdata’s
implementation we fill in this information on load.

5.4 Track Metadata

More often than not, in addition to data files containing
e.g. time varying annotations, datasets provide track-level
metadata. When loading annotations, we also link any
available track level metadata with each track id group.
This can be particularly useful when splitting data, such
as for creating unbiased train-validation-test splits [23], or
for analyzing evaluation metrics over different splits of a
dataset.

6. CONCLUSIONS

Although data distribution challenges remain, we believe
that the use of mirdata will result in reproducible us-
age of datasets in research moving forward. Future iter-
ations of mirdata will include support for large (out of
memory) datasets and an increased number of supported
datasets. As datasets become more open and annotation
formats standardize, the scientific need for this library will
lessen, but it will remain a useful tool for ease of working
with datasets.

Importantly, we designed mirdata to have a low bar-
rier to entry for contributions. New datasets can be easily
included independently with minimal interfacing with the
rest of the library. With active community participation, we
believe that mirdata can help ensure that MIR datasets
are used in a consistent, reproducible manner moving for-
ward.

7. REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for
large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 16), pages 265–283, 2016.

[2] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whit-
man, and Paul Lamere. The million song dataset. In
ISMIR 2011: Proceedings of the 12th International So-
ciety for Music Information Retrieval Conference, Oc-
tober 24-28, 2011, Miami, Florida, pages 591–596,
2011.

[3] Rachel M Bittner, Brian McFee, Justin Salamon, Pe-
ter Li, and Juan P. Bello. Deep salience representations



for f0 estimation in polyphonic music. In 18th Interna-
tional Society of Music Information Retrieval (ISMIR)
Conference, October 2017.

[4] Rachel M Bittner, Justin Salamon, Mike Tierney,
Matthias Mauch, Chris Cannam, and Juan P Bello.
MedleyDB: A multitrack dataset for annotation-
intensive MIR research. In International Society of Mu-
sic Information Retrieval (ISMIR), October 2014.

[5] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
rian Krebs, and Gerhard Widmer. madmom: a new
python audio and music signal processing library. In
Proceedings of the 24th ACM International Conference
on Multimedia, ACMMM, 2016.

[6] Dmitry Bogdanov, Nicolas Wack, Emilia
Gómez Gutiérrez, Sankalp Gulati, Perfecto Her-
rera Boyer, Oscar Mayor, Gerard Roma Trepat, Justin
Salamon, José Ricardo Zapata González, and Xavier
Serra. Essentia: An audio analysis library for music
information retrieval. In 14th Conference of the
International Society for Music Information Retrieval
(ISMIR). International Society for Music Information
Retrieval (ISMIR), 2013.

[7] Juan J Bosch, Ricard Marxer, and Emilia G’omez.
Evaluation and combination of pitch estimation meth-
ods for melody extraction in symphonic classical mu-
sic. Journal of New Music Research, 45(2):101–117,
2016.

[8] Tak-Shing Chan, Tzu-Chun Yeh, Zhe-Cheng Fan,
Hung-Wei Chen, Li Su, Yi-Hsuan Yang, and Roger
Jang. Vocal activity informed singing voice separation
with the ikala dataset. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 718–722. IEEE, 2015.

[9] Taemin Cho and Juan P Bello. A feature smoothing
method for chord recognition using recurrence plots. In
12th International Society for Music Information Re-
trieval Conference, ISMIR, 2011.

[10] François Chollet et al. Keras. https://keras.io,
2015.

[11] Alice Cohen-Hadria and Geoffroy Peeters. Music
structure boundaries estimation using multiple self-
similarity matrices as input depth of convolutional neu-
ral networks. In Audio Engineering Society Confer-
ence: 2017 AES International Conference on Semantic
Audio. Audio Engineering Society, 2017.

[12] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman,
Aren Jansen, Wade Lawrence, R Channing Moore,
Manoj Plakal, and Marvin Ritter. Audio set: An on-
tology and human-labeled dataset for audio events.
In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 776–
780. IEEE, 2017.

[13] Masataka Goto, Hiroki Hashiguchi, Takuichi
Nishimura, and Ryuichi Oka. Rwc music database:
Popular, classical and jazz music databases. In ISMIR,
volume 2, pages 287–288, 2002.

[14] Masataka Goto, Hiroki Hashiguchi, Takuichi
Nishimura, and Ryuichi Oka. Rwc music database:
Music genre database and musical instrument sound
database. 2003.

[15] Thomas Grill and Jan Schlüter. Music boundary detec-
tion using neural networks on combined features and
two-level annotations. In ISMIR, pages 531–537, 2015.

[16] Christopher Harte. Towards automatic extraction of
harmony information from music signals. PhD thesis,
2010.

[17] Eric J Humphrey, Justin Salamon, Oriol Nieto, Jon
Forsyth, Rachel M Bittner, and Juan Pablo Bello. Jams:
A json annotated music specification for reproducible
mir research. In ISMIR, pages 591–596, 2014.

[18] Vincent Lostanlen, Carmine-Emanuele Cella, Rachel
Bittner, and Slim Essid. Medley-solos-DB: a cross-
collection dataset for musical instrument recognition,
September 2018.

[19] Ethan Manilow, Prem Seetharaman, and Bryan Pardo.
The northwestern university source separation library.
Proceedings of the 19th International Society of Mu-
sic Information Retrieval Conference (ISMIR 2018),
Paris, France, September 23-27, 2018.

[20] Matthias Mauch, Hiromasa Fujihara, Kazuyoshi
Yoshii, and Masataka Goto. Timbre and melody fea-
tures for the recognition of vocal activity and instru-
mental solos in polyphonic music. In ISMIR, ISMIR,
2011.

[21] Brian McFee and Juan P. Bello. Structured training for
large-vocabulary chord recognition. In 18th Interna-
tional Society for Music Information Retrieval Confer-
ence, ISMIR, 2017.

[22] Brian McFee, Eric J Humphrey, Oriol Nieto, Justin
Salamon, Rachel Bittner, Jon Forsyth, and Juan P
Bello. Pump up the jams: V0. 2 and beyond. Music
and Audio Research Laboratory, New York University,
Tech. Rep, 2015.

[23] Brian McFee, Jong Wook Kim, Mark Cartwright,
Justin Salamon, Rachel M Bittner, and Juan Pablo
Bello. Open-source practices for music signal process-
ing research: Recommendations for transparent, sus-
tainable, and reproducible audio research. IEEE Signal
Processing Magazine, 36(1):128–137, 2019.

[24] Brian McFee, Oriol Nieto, Morwaread M Farbood, and
Juan Pablo Bello. Evaluating hierarchical structure in
music annotations. Frontiers in psychology, 8:1337,
2017.



[25] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
librosa: Audio and music signal analysis in python. In
Proceedings of the 14th python in science conference,
pages 18–25, 2015.

[26] Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and
Geoffroy Peeters. Dali: A large dataset of synchro-
nized audio, lyrics and notes, automatically created us-
ing teacher-student machine learning paradigm. In 19th
International Society for Music Information Retrieval
Conference, 2018.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. 2017.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. Scikit-learn: Machine learn-
ing in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[29] Colin Raffel, Brian McFee, Eric J Humphrey, Justin
Salamon, Oriol Nieto, Dawen Liang, Daniel PW Ellis,
and C Colin Raffel. mir eval: A transparent implemen-
tation of common mir metrics. In In Proceedings of the
15th International Society for Music Information Re-
trieval Conference, ISMIR. Citeseer, 2014.

[30] Justin Salamon and Emilia Gómez. Melody extrac-
tion from polyphonic music signals using pitch contour
characteristics. IEEE Transactions on Audio. Speech.
Lang. Processing, 20(6):1759–1770, 2012.

[31] Jordan Bennett Louis Smith, John Ashley Burgoyne,
Ichiro Fujinaga, David De Roure, and J Stephen
Downie. Design and creation of a large-scale database
of structural annotations. In ISMIR, volume 11, pages
555–560. Miami, FL, 2011.

[32] Derek Tingle, Youngmoo E Kim, and Douglas Turn-
bull. Exploring automatic music annotation with
acoustically-objective tags. In Proceedings of the in-
ternational conference on Multimedia information re-
trieval, pages 55–62. ACM, 2010.

[33] Antonio Torralba, Alexei A Efros, et al. Unbiased look
at dataset bias. In CVPR, volume 1, page 7. Citeseer,
2011.

[34] Christopher J Tralie and Brian McFee. Enhanced hier-
archical music structure annotations via feature level
similarity fusion. arXiv preprint arXiv:1902.01023,
2019.

[35] Karen Ullrich, Jan Schlüter, and Thomas Grill. Bound-
ary detection in music structure analysis using con-
volutional neural networks. In ISMIR, pages 417–422,
2014.

[36] Lyndon White, Roberto Togneri, Wei Liu, and
Mohammed Bennamoun. Datadeps.jl: Repeatable
data setup for replicable data science. CoRR,
abs/1808.01091, 2018.

[37] Qingyang Xi, Rachel M Bittner, Johan Pauwels,
Xuzhou Ye, and Juan Pablo Bello. Guitarset: A dataset
for guitar transcription. In ISMIR, pages 453–460,
2018.


