
ANALYSIS OF COMMON DESIGN CHOICES IN DEEP LEARNING
SYSTEMS FOR DOWNBEAT TRACKING

Magdalena Fuentes1,2, Brian McFee3,4, Hélène C. Crayencour1, Slim Essid2, Juan P. Bello3

1 L2S, CNRS-Univ.Paris-Sud-CentraleSupélec, France
2 LTCI, Télécom ParisTech, Univ. Paris-Saclay, France

3 Music and Audio Research Laboratory, New York University, USA
4 Center of Data Science, New York University, USA

ABSTRACT

Downbeat tracking consists of annotating a piece of mu-
sical audio with the estimated position of the first beat of
each bar. In recent years, increasing attention has been paid
to applying deep learning models to this task, and various
architectures have been proposed, leading to a significant
improvement in accuracy. However, there are few insights
about the role of the various design choices and the delicate
interactions between them. In this paper we offer a system-
atic investigation of the impact of largely adopted variants.
We study the effects of the temporal granularity of the in-
put representation (i.e. beat-level vs tatum-level) and the
encoding of the networks outputs. We also investigate the
potential of convolutional-recurrent networks, which have
not been explored in previous downbeat tracking systems.
To this end, we exploit a state-of-the-art recurrent neural
network where we introduce those variants, while keeping
the training data, network learning parameters and post-
processing stages fixed. We find that temporal granularity
has a significant impact on performance, and we analyze
its interaction with the encoding of the networks outputs.

1. INTRODUCTION

Musical rhythm is organized into hierarchical levels which
interact with each other. One of the predominant pulsa-
tions is the beat, which matches the foot tapping of a per-
son when listening to a music piece. Tatum is related to
the fastest pulsations still perceived by listeners, usually
twice to four times faster than beat. Beats of different
accentuations are grouped in bars. Automatic downbeat
tracking aims to determine the first beat of each bar, being
a key component for the study of the hierarchical metri-
cal structure. It is an important task in Music Information
Retrieval (MIR) that represents a useful input for several
applications, such as automatic music transcription [19],
structural segmentation [18] and rhythm similarity [22].

c© Magdalena Fuentes, Brian McFee, Hélène C. Crayen-
cour, Slim Essid, Juan P. Bello. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Mag-
dalena Fuentes, Brian McFee, Hélène C. Crayencour, Slim Essid, Juan P.
Bello. “Analysis of Common Design Choices in Deep Learning Systems
for Downbeat Tracking”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

The task of downbeat tracking has received considerable
attention in recent years. In particular, the introduction
of deep neural networks provided a major improvement
in the accuracy of downbeat tracking systems [3, 10, 16],
and the systems relying on deep learning have become the
state-of-the-art. These approaches usually exploit a first
stage of low-level feature computation, where several rep-
resentations such as chroma [10] or spectral flux [16] have
been adopted. This is usually followed by a stage of fea-
ture learning with neural networks, whose outcome is an
activation function that indicates the most likely candi-
dates for downbeats among the input audio observations.
Then, a post-processing stage is often used, which con-
sists of a dynamic model, typically a Dynamic Bayesian
Network (DBN), Hidden Markov Model (HMM) or Con-
ditional Random Field [4, 11, 12].

Among the mentioned systems, different design choices
were taken at different stages of the processing pipeline,
such as the temporal granularity of the input, low-level
feature representations, network architecture, and the post-
processing methods. Additionally, different proposals
were evaluated using distinct training data and/or evalu-
ation schemes (e.g., cross-validation vs leave-one-dataset-
out) [4, 11, 16]. This variability makes it difficult to gain
insights about the actual role of each design choice, and
the delicate interactions between them.

In this paper, we systematically investigate the impact
of design choices in downbeat tracking models. In par-
ticular, we study the effect of temporal granularity of the
input representation (i.e., beat-level vs tatum-level), the
output encoding (i.e., the label encoding used to train the
networks), and their interactions with the post-processing
stage and internal network architecture. This allows for
gaining fresh understanding into the potential and limita-
tions of the state-of-the-art approaches, and takes a step
toward the systematic design of these systems.

1.1 Related work

Durand et al. [11], proposed a system for downbeat track-
ing that consists of an ensemble of models each represent-
ing four different aspects of music: rhythm, harmony, bass
content and melody. The authors developed a Convolu-
tional Neural Network (CNN) for each musically inspired
representation, and estimated the downbeat likelihood by



averaging the likelihoods produced by each CNN in the en-
semble. Then, the authors turn the soft state assignments
of the CNN ensemble into hard assignments (downbeat vs
no-downbeat) using an HMM. This approach showed the
potential of CNNs for downbeat tracking and the comple-
mentarity of the different musically inspired features.

In parallel, Böck et al. [4], presented a system that
jointly tracks beats and downbeats using Bi-Directional
Long-Short Term Memory networks (Bi-LSTMs). The
authors used three different magnitude spectrograms and
their first order differences as input representations, in or-
der to help the networks capture features with sufficient
resolution in both time and frequency. The input represen-
tations were fed into a cascade of three fully connected Bi-
LSTMs, obtaining activation functions for beat and down-
beat as output. Subsequently, a highly constrained DBN
was used for inferring the metrical structure.

In turn, Krebs et al. [16] proposed a downbeat track-
ing system that uses two beat-synchronous features to rep-
resent the percussive and harmonic content of the audio
signal. Those feature representations, based on spectral
flux and chroma, are then fed into two independent Bidi-
rectional Gated Recurrent Units (Bi-GRUs) [8]. Finally,
the downbeat likelihood is obtained by merging the likeli-
hoods produced by each Bi-GRU. The final inference for
downbeat candidates relies on a constrained DBN.

More recently, combinations of CNNs and Recurrent
Neural Networks (RNNs) such as GRUs or LSTMs have
received increasing attention. For instance, Convolutional-
Recurrent Neural Network architectures (CRNNs) have
been proposed in other MIR tasks such as chord recogni-
tion [20] or drum transcription [23], and they are the state
of the art in other audio processing domains such as sound
event detection [2, 6].

1.2 Our contributions

In this paper we offer a systematic investigation of impor-
tant system design choices, namely the impact of the in-
put observations’ temporal granularity, the output encod-
ing, and the post-processing stage. Also, we investigate the
potential of CRNNs for improving feature learning for the
task of downbeat tracking. To perform our experiments,
we modify a state-of-the-art RNN-system [16], and study
the effect of the different envisaged variations, keeping the
training setup and input features fixed. Our experimental
results show that the post-processing stage improves the
performance in all cases, whereas the addition of a dense-
structured output encoding does not help in the training
of downbeat tracking systems. The proposed CRNN ar-
chitecture performs competitively with the state-of-the-art
RNN system, being even able to improve the reference sys-
tem’s performance with a proper choice of input’s temporal
grid. We also observe that though beat tracking errors tend
to propagate to the output decisions, the CRNN system is
able to recover from these errors better than the baseline
RNN when taking the input observations over a tatum grid
(as opposed to beat grid).

2. ANALYSIS OF COMMON VARIATIONS

In this section we briefly describe the baseline system, the
motivation of each studied variation (or design choice) and
the experiments related to it. In particular, we study the ef-
fects and interactions of 4 design choices: the input’s tem-
poral granularity, the output encoding, the effect of post-
processing and the network architecture.

2.1 Recurrent neural network baseline

To perform our analysis, we implemented the state-of-
the-art downbeat tracking system presented by Krebs et
al. [16]. The architecture of this system consists of two
concatenated Bi-GRUs of 25 units each, where each hid-
den state vector h(t) at time t is mapped by a dense layer
to a state prediction p(t) using a sigmoid activation. A
dropout layer is used in training to avoid over-fitting. Two
separate networks are trained using different input features
and the obtained likelihoods are averaged. The low-level
input representations comprise two beat-synchronous fea-
ture sets, representing the harmonic and percussive con-
tent of the audio signal. The set of features describing
percussive content, which we will refer to as PCF (Per-
cussive Content Feature), is based on a multi-band spectral
flux, computed using the short time Fourier transform with
a Hann window, using a hop-size of 10ms and a window
length of 2048 samples, with a sampling rate of 44100 Hz.
The obtained spectrogram is filtered with a logarithmic fil-
ter bank with 6 bands per octave, covering the range from
30 to 17 000 Hz. The harmonic content’s representation is
the CLP (Chroma-Log-Pitch) [21] with a frame rate of 100
frames per second. The temporal resolution of the features
is 4 subdivisions of the beat for the PCF, and 2 subdivi-
sions for the CLP features. For computational efficiency,
the authors in [16] assembled in matrices column-wise this
resolution increment so the CLP feature set is of dimension
12× 2 and the PCF is 45× 4, which we maintained in this
work. The beats for the beat-synchronous feature mapping
are obtained using the beat tracker presented in [3], with
the DBN introduced in [17]. 1

In our experiments, we have observed that including
batch normalization (BN) layers [14] consistently im-
proves performance. We included two BN layers, one after
the input layer, and the other between the Bi-GRUs.

The optimization of the model parameters is carried out
by minimizing the binary-cross-entropy between the esti-
mated and reference values.

2.2 Temporal granularity: beat vs tatums

The temporal granularity of the input observations (or tem-
poral grid) relates to important aspects of the design of
downbeat tracking systems. It determines the length of the
context taken into account around musical events, which
controls design decisions in the network architecture, such
as filter sizes in a CNN, or the length of training sequences
in an RNN.

1 In particular we used the DBNBeatTracker algorithm of the madmom
package version 0.16 [5].



Among the different downbeat systems, several granu-
larities have been used. In particular, the latest state-of-the-
art systems use either musically motivated temporal grids
(such as tatums or beats) or fixed length frames. Systems
that use beat- or tatum-synchronous input depend on reli-
able beat/tatum estimation upstream, so they are inherently
more complex, and prone to error propagation [11, 16].
On the other hand, frame-based systems are not subject
to these problems, but the input dimensionality is much
higher due to the increased observation rate [4], which
causes difficulties when training the models.

In this paper, we focus on musically motivated tempo-
ral analysis grids, because they reduce the computational
complexity of the systems considerably. We study the vari-
ations in performance using beat and tatum grids.

We compute the tatums by interpolating the beats, with
a resolution of 4 tatums per beat interval. 2 To study the
impact of the temporal grid, we train the networks keep-
ing the input features, architecture, training data, and post-
processing fixed, while changing only the inputs’ temporal
granularity. We adapt the sequence length used for training
the networks in order to consider the same musical context
in all cases (as specified further below). We compare the
interaction of the choice of temporal grid with those of the
output encoding, the RNN or CRNN architectures and the
post-processing stage.

2.3 Output encoding: structured vs unstructured

Among the downbeat tracking systems mentioned in Sec-
tion 1.1, the common choice is to use an one-hot vector
encoding to indicate the presence or absence of a down-
beat at a particular position of the excerpt at training time.
For instance, if using temporal analysis grid that is aligned
on beats, a sequence of beats is usually encoded as s =
[1, 0, 0, 0, 1, 0, 0, 0], indicating the presence of a downbeat
at the first and 5th beat positions. We refer to this as un-
structured encoding. Here, we also investigate whether a
densely structured encoding may help the neural networks
perform a better downbeat tracking.

2.3.1 Structured encoding definition

We define the structured encoding as a set of classes that
are active within the entire inter-beat interval. This is the
set C = {1, . . . , 13}, where each class indicates the po-
sition of the beat inside a bar. We consider a maximum
bar length of 12 beats, and an extra class X for labeling an
observation in the absence of beats and downbeats, for a
total of 13 classes (K = 13). For instance, to label a mu-
sical piece with time signature 4/4, we use the subset of
labels {1, 2, 3, 4}, and we label consecutive time units cor-
responding to the same beat interval with the same class.
Figure 1 illustrates the difference between the proposed
and the unstructured encoding. In this strutured class lex-
icon, the downbeats are represented by the label 1.

We train the networks incorporating both the unstruc-
tured and the structured encoding. In this configuration,

2 This estimation is on the 16th note level, which we assumed as a
good compromise to perform downbeat tracking.

Figure 1. Audio excerpt in 4/4 labeled with the struc-
tured encoding (top figure) and the unstructured encoding
(bottom figure). The temporal granularity showed is tatum
(beat quarter-notes). In the structured encoding each tatum
receives a label corresponding to its metrical position.

we use one dense layer to decode each class lexicon, and
we evaluate the performance of the system using the un-
structured output. The dense layers are connected so the
information of the beginning of the bar is provided by the
unstructured dense to the structured one as an extra fea-
ture. We test the effect of the encoding on the different
temporal granularities. It is important to note that the un-
structured coding has a clear interaction with the temporal
grid in terms of the number of 1- vs 0- symbols in the train-
ing data , while the structured coding is consistent (i.e., the
amount of class instances remains proportional) under any
temporal granularity.

2.4 Post-processing: DBN vs thresholding

The importance of the post-processing stage has been ad-
dressed in previous works [11,16]. In this paper, we assess
the relative importance of this stage depending on the tem-
poral granularity and the network architecture. To that end,
we use the DBN presented in [16]. This DBN models beats
(or tatums) as states, forcing the state sequence to always
transverse the bar from left to right (i.e., transitions from
beat 2 to beat 1 are not allowed), and imposing that time
signature changes are unlikely. We consider bar lengths of
3 and 4 beats (12 and 16 tatums). We invite the interested
reader to refer to [16] for further information.

2.5 Architecture: RNNs vs CRNNs

We base our CRNN architecture design on previous state-
of-the-art choices. Particularly, our CNN design is based
on the best CNN of the ensemble in [11], which we com-
bine with a single Bi-GRU layer [8]. The bi-directional
version of GRUs integrates the information across both
temporal directions, providing temporal smoothing. CNNs
are capable of extracting high level features that are in-
variant to both spectral and temporal dimensions, whether
RNNs model longer term dependencies accurately.

The architecture that we propose can be seen as an
encoder-decoder system [7], where the encoder maps the
input to an intermediate time series representation that is
then mapped to the output space by the decoder. An in-
teresting advantage of this kind of scheme is that several
combinations of encoder-decoder can be explored easily
as long as they share the intermediate representation.



Figure 2. Encoder architecture: the input representation
is either a beat/tatum-synchronous chromagram or multi-
band spectral flux. Each time unit is fed into the encoder
with a context window. The CNN outputs a sequence of
dimension T ×N which is fed to the Bi-GRU. Finally, the
encoder output dimension is T × 512.

Figure 3. Summary of the CNN architecture.

2.5.1 Encoder architecture

The encoder architecture is depicted in Figure 2. It con-
sists of a convolutional-recurrent network. Each temporal
unit (either beat or tatum) is fed into the CNN considering
a fixed-length context window of approximately one bar
(following [11]). The CNN processes each window inde-
pendently, and outputs a sequence of size T ×N (T being
the length of the input sequence and N the output dimen-
sion of the CNN) that is fed to the Bi-GRU. In this scheme,
the CNN processes the signal locally whereas the recurrent
network provides temporal consistency.

The CNN architecture is based on the harmonic-CNN
presented in [11]. This network consists of a cascade of
convolutional and max-pooling layers, with dropout used
during training to avoid over-fitting, to a total of eight lay-
ers. We add batch normalization layers to avoid too large
or small values within the network that could hurt the en-
coder. Additionally, we modify the filters’ size to adapt to
the feature shapes described in Section 2.1. Figure 3 shows
the filter parameters in the case of the tatum grid.

The last layer of the CNN differs from the reference
implementation in the number of units, which we set to 13
instead of 2 to fit features of bigger dimension to the Bi-
GRU. We also remove the softmax activation of the last
layer because the class discrimination is not carried out by
the CNN. A summary of the CNN architecture is presented
in Figure 3. Figure 3 represents the CNN’s 2D filter sizes
and the number of units, which is [m×n, u], with m and n
operating in the spectral and temporal dimensions respec-
tively, and u the number of units. The activation (if used) is
indicated before the CNN description. Max pooling layers
are notated as [m′×n′], s indicating frequency and time di-
mension and stride. The interested reader is referred to [11]
for the motivation of network architecture.

The local features computed by the CNN are fed into
a Bi-GRU, which consists of two independent GRUs, one
running in each temporal direction. Their hidden state vec-
tors are concatenated to produce the bi-directional hidden
state vector. We set the dimensionality of each GRU to
256, resulting in a total of 512.

2.5.2 Decoder architecture

Our decoder architecture is a fully connected dense layer
that maps each hidden state vector to the prediction state
using a sigmoid activation, resulting in a downbeat like-
lihood at each time unit. The optimization of the model
parameters is carried out by minimizing the binary-cross-
entropy among the estimated and actual values.

3. EXPERIMENTS

3.1 Experimental setup

Model implementation: The models were implemented
with Keras 2.0.6 and TensorFlow 1.2.0 [1, 9]. We use the
ADAM optimizer [15] with default parameters. We stop
training after 10 epochs without changes on the validation
set, up to a maximum of 100 epochs. The low-level repre-
sentations were extracted using the madmom library and
mapped to either the beat or tatum grid (see Section 2.1).

Model variations: We study the following variations:
Temporal granularity: using low-level features synchro-
nized to two temporal granularities (tatum and beat);
Output encoding: with and without the addition of the
structured encoding during training;
Post-processing: using either a threshold or a DBN;
Architecture: we test RNNs and CRNNs.

This results in sixteen different configurations, which
we will refer to as and R or C to indicate the architec-
ture (RNN vs CRNN); S or U to indicate the encoding
(structured vs unstructured); B or T to indicate temporal
granularity (beat vs tatum); and t and d to indicate the
post-processing method (threshold vs DBN). All models
are trained using patches of 15 beats or 60 tatums depend-
ing on the temporal grid used. We use mini-batches of 64
patches per batch and a total of 100 batches per epoch.

Datasets: We investigate the performance of these config-
urations on 8 datasets of Western music, in particular:
Klapuri which consists of 4h 54m of various genres songs.
R. Williams which consists of 4h 31m of Pop songs.
Rock which consists of 12h 53m of Pop and Rock songs.
RWC Pop which consists of 6h 47m of Pop music.
Beatles which consists of 8h 01m of Beatles songs.
Ballroom which consists of 6h 04m of Ballroom dances.
Hainsworth which contains 3h 19m of various genres.
RWC Jazz, which consists of 3h 44min of Jazz music.

Evaluation methods: We perform leave-one-dataset-out
evaluation and report the F-measure scores as in [11, 16].
25% of the training data is used for validation. The



RWC Jazz dataset is only used to illustrate the performance
of the systems in a challenging scenario where the beat es-
timation is less accurate and the music genre differs con-
siderably from the training data, it is not used for train-
ing. 3 Candidates for downbeats are obtained in two dif-
ferent manners. The first one is by thresholding the out-
put activations with a threshold chosen to give the best F-
measure result on the validation set. The second manner
is to post-process the networks’ outputs by adapting the
DBN used in [16]. In this way we report the gain of us-
ing the DBN in each case. We use the DBN to model time
signatures 3/4 and 4/4 following [16], and modifying it ac-
cordingly to the temporal grid (i.e., allowing bar lengths of
{3,4} beats or {12, 16} tatums).

Methods are evaluated independently on each dataset
listed above for comparison to prior work. We also in-
clude an evaluation over the union of all datasets (denoted
ALL). To determine statistically significant differences, we
conduct a Friedman test on the ALL-set results, followed
by post-hoc Conover tests for pairwise differences using
Bonferroni-Holm correction for multiple testing [13].

All configurations are trained with the same input low-
level representations, the same musical context, the same
training parameters and post-processing method. This al-
lows us to draw conclusions about the performance of the
models in different conditions and to compare the architec-
tures modularly.

3.2 Results and discussion

We use as baseline two state-of-the-art downbeat tracking
systems [11, 16], which reported 78% and 78.6% mean
F-measure across all datasets. 4 The performance of the
models presented here across datasets is better than the
baselines for all the cases when using the DBN as post-
processing stage. The better results are obtained with
RUBd (reference implementation, see Section 2.1) and
CUTd up to 82.4% and 82.8% respectively. A possible
explanation for this improvement is the difference in the
beat tracking performance, which is 3.3% better than the
one reported in [16]. This is likely to explain the 4.7%
improvement in the RUBd model which is our reference
implementation. To make a fair comparison, we use the
RUBd model as a baseline, with the reasonable assumption
that it behaves as the state-of-the-art. Figure 4 illustrates
the performance of the different model variations across
datasets. A detailed analysis is presented in the following.

The Friedman test on the ALL set rejected the null
hypothesis (p < 1e−10). Post-hoc analysis determined
that all pair-wise comparisons were significantly different
(p < 1e−3), with the following exceptions: RUTt/RSTt,
RUTd/RSTd, CUTt/CSBt, CUTd/CSBd, CUBd/CSTd,
and RSBd/CUBd.

Effect of post-processing: As shown in Figure 4, d vs t
model variants, the DBN post-processing helps in all

3 We kept RWC Jazz out of the training set to be comparable to [16].
4 For datasets that are not evaluated in [11], we report results in [16].

cases, being particularly important with the tatum granu-
larity and with the RNN models. The gap in performance
between the models with and without post-processing is
notable in the case of the Ballroom database, where in
some cases is up to 10% F-measure. The DBN increases
the performance from RUTt to RUTd by 6.6% in the
case of tatum grid across all databases, and 4.1% in the
case of the beat grid (RUBt to RUBd). A similar trend is
observed with the structured models (RS). The increase
in the CRNN models performance is smaller, being 3.8%
from CUTt to CUTd and 2.7% for CUBt to CUBd. The
results obtained with the thresholding (t models) are more
consistent over temporal granularities for the CRNN
models, which suggests that the likelihood estimation of
that model is more accurate and consistent over time.

Effect of the temporal granularity: The temporal grid
has an important effect on the performance of the RNN
models, as illustrated in Figure 4 (T vs B variations). When
using a tatum grid, the thresholding results (e.g. RUTt) are
lower in most of the cases, showing that the RNN vari-
ations have more difficulty to model the temporal depen-
dencies in that grid. The post-processing stage with the
DBN becomes more important in the case of the tatum
grid, helping the RNN models up to an extra 2.5% in mean
F-measure over all datasets compared to the beat grid case.

By contrast, the CRNN models appear to be robust to
the temporal granularity change. In particular, for the case
of the thresholding results, the performance of the models
is similar for the beat and tatum granularities (e.g. CUBt
vs CUTt), which implies the estimated likelihoods perform
comparably. The increase in resolution seems to help the
CRNN models in most cases, showing a small increase
from beat to tatum grid with the DBN (e.g., CUBd vs
CUTd). This indicates that the CRNN architecture is likely
being able to take advantage of a finer temporal grid.

The impact of the temporal granularity in the RNN and
CRNN models are in line with the decisions of the authors
in [11, 16], who in the first case decided to use tatums
(with CNNs), and in the second case decided to use beats
(with Bi-GRUs).

Effect of the structural encoding: Regarding the struc-
tural encoding, the experiments show that it has no im-
pact on the performance across databases (e.g. RU vs RS
and CU vs CS in Figure 4). We observed some examples
where the performance decreases, and we noticed two sys-
tematic problems: first, in some cases the estimated likeli-
hoods become sharper and more structured when using the
encoding, and when the estimation of the networks is not
accurate the likelihoods consistently maintain the bad esti-
mation across the whole duration of the audio signal. This
indicates that the encoding is structuring the likelihood es-
timation, but that is not desirable in some cases, especially
if it prevents the post-processing stages from compensating
for these errors. Second, we observed several cases where
the attack of the downbeat is not accurately estimated with
the addition of the structured encoding. A possible expla-



RUTt
RUTd
RUBt
RUBd
RSTt
RSTd
RSBt
RSBd
CUTt
CUTd
CUBt
CUBd
CSTt
CSTd
CSBt
CSBd

Klapuri Robbie Williams Rock RWC Pop

0.6 0.7 0.8 0.9
F-measure

RUTt
RUTd
RUBt
RUBd
RSTt
RSTd
RSBt
RSBd
CUTt
CUTd
CUBt
CUBd
CSTt
CSTd
CSBt
CSBd

Beatles

0.6 0.7 0.8 0.9
F-measure

Ballroom

0.6 0.7 0.8 0.9
F-measure

Hainsworth

0.6 0.7 0.8 0.9
F-measure

ALL

Figure 4. For each dataset, the estimated mean F-measure for each model under comparison. Error bars correspond to 95%
confidence intervals under bootstrap sampling (n = 1000). ALL corresponds to the union of all test collections.

nation is the lack of information about the onset of the
no-downbeat intervals in the structured encoding, which
could be preventing the system to correctly model beats
and downbeats internally. This could change in a scenario
with joint beat and downbeat tracking, where the sparse
encoding also contains the information of the location of
beats. The addition of data augmentation could also con-
tribute to help the system to learn the encoding properly.

CRNN vs RNN — difficult scenario: Finally, to see
the performance of the systems in a difficult scenario, we
performed an experiment on the RWC Jazz dataset, whose
results are given in Figure 5. The DBN post-processing is
used in all cases. The CRNN models are more robust to un-
seen data, since the jazz genre is different from the genres
of the training data. The CRNN models have better per-
formance and less dispersion in the results. Analogously
to Figure 4, the RNN models show slightly better mean
performance in beat grid and the CRNN models in tatum
grid.

4. CONCLUSIONS AND FUTURE WORK

In this work we presented a systematic study of com-
mon decisions in the design of downbeat tracking systems
based on deep neural networks. We explored the impact of
temporal granularity, output encoding, and post-processing
stage in two different architectures. The first architecture
is a state-of-the-art RNN, and the second is a CRNN in-
troduced in this paper. Experimental results show that
the choice of the inputs’ temporal granularity has a sig-
nificant impact on performance, and that the best config-
uration depends on the architecture. The post-processing
stage improves performance in all cases, with less impact
in the case of the CRNN models whose likelihood esti-

RUBd RUTd CUBd CUTd

0.2

0.4

0.6

0.8

1.0

F
­m

ea
su

re

Figure 5. F-measure scores for the RWC Jazz dataset.
Boxes show median value and quartiles, whiskers the rest
of the distribution. Black dots denote mean values. All
results are obtained using the DBN post-processing.

mations are most accurate. We conclude that the addition
of a densely structured output encoding does not help in
the training of downbeat tracking systems. Nevertheless,
the interaction of the structured encoding with multi-task
training (beat and downbeat tracking) and data augmenta-
tion are interesting perspectives for future studies, and will
be addressed in future work. The proposed CRNN archi-
tecture performs as the state-of-the-art, proving robustness
in a challenging scenario.

Acknowledgments. The authors would like to thank Si-
mon Durand and Florian Krebs for sharing the code of their
downbeat tracking architectures with us. B.M. is supported
by the Moore-Sloan Data Science Environment at NYU.



5. REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

[2] S. Adavanne, P. Pertil, and T. Virtanen. Sound event de-
tection using spatial features and convolutional recur-
rent neural network. In 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2017.

[3] S. Böck, F. Krebs, and G. Widmer. A multi-model ap-
proach to beat tracking considering heterogeneous mu-
sic styles. In 15th International Society for Music In-
formation Retrieval Conference (ISMIR), 2014.

[4] S. Böck, F. Krebs, and G. Widmer. Joint beat and
downbeat tracking with recurrent neural networks. In
17th International Society for Music Information Re-
trieval Conference (ISMIR), 2016.

[5] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
rian Krebs, and Gerhard Widmer. madmom: a new
python audio and music signal processing library. In
Proceedings of the 24th ACM International Conference
on Multimedia (ACMMM, 2016.

[6] E. Çakr, G. Parascandolo, T. Heittola, H. Huttunen, and
T. Virtanen. Convolutional recurrent neural networks
for polyphonic sound event detection. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 25(6):1291–1303, June 2017.

[7] K. Cho, A. Courville, and Y. Bengio. Describing
multimedia content using attention-based encoder-
decoder networks. IEEE Transactions on Multimedia,
17(11):1875–1886, Nov 2015.

[8] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[9] F. Chollet. Keras. https://github.com/
fchollet/keras, 2015.

[10] S. Durand, J. P. Bello, B. David, and G. Richard.
Downbeat tracking with multiple features and deep
neural networks. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[11] S. Durand, J. P. Bello, B. David, and G. Richard. Ro-
bust downbeat tracking using an ensemble of convo-
lutional networks. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 25(1):76–89, Jan
2017.

[12] S. Durand and S. Essid. Downbeat detection with con-
ditional random fields and deep learned features. In
17th International Society for Music Information Re-
trieval Conference (ISMIR), 2016.

[13] S. Garcia and F. Herrera. An extension on“statistical
comparisons of classifiers over multiple data sets” for
all pairwise comparisons. Journal of Machine Learn-
ing Research, 9:2677–2694, Dec 2008.

[14] S. Ioffe and C. Szegedy. Batch normalization: accel-
erating deep network training by reducing internal co-
variate shift. In 32nd International Conference on Ma-
chine Learning (ICML), 2015.

[15] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[16] F. Krebs, S. Böck, M. Dorfer, and G. Widmer. Down-
beat tracking using beat synchronous features with re-
current neural networks. In 17th International Society
for Music Information Retrieval Conference (ISMIR),
2016.

[17] F. Krebs, S. Böck, and G. Widmer. An efficient state
space model for joint tempo and meter tracking. In 16th
International Society for Music Information Retrieval
Conference (ISMIR), 2011.

[18] N. C. Maddage. Automatic structure detection for pop-
ular music. IEEE MultiMedia, 13(1):65–77, Jan 2006.

[19] M. Mauch and S. Dixon. Simultaneous estimation of
chords and musical context from audio. IEEE Trans-
actions on Audio, Speech, and Language Processing,
18(6):1280–1289, aug 2010.

[20] B. McFee and J.P. Bello. Structured training for large-
vocabulary chord recognition. In 18th International
Society for Music Information Retrieval Conference
(ISMIR), 2017.

[21] M. Müller and S. Ewert. Chroma toolbox: Matlab im-
plementations for extracting variants of chroma-based
audio features. In 12th International Society for Music
Information Retrieval Conference (ISMIR), 2011.

[22] J. Paulus and A. Klapuri. Measuring the similarity of
rhythmic patterns. In Michael Fingerhut, editor, Proc.
of the Third International Conference on Music Infor-
mation Retrieval (ISMIR), 2002.

[23] R. Vogl, M. Dorfer, G. Widmer, and P. Knees. Drum
transcription via joint beat and drum modeling using
convolutional recurrent neural networks. In 18th Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR), 2017.


