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Abstract—A Phase Locked Loop (PLL) based method for
determining audio authenticity is proposed in this work.
Assuming that the power grid signal is embedded in an audio
signal, certain pre-processing techniques are applied in order
to obtain the Electrical Network Frequency (ENF). A PLL
is then used to estimate the time-varying phase of the ENF
signal. Postprocessing is carried out so as to improve system
performance. Finally, an automatic decision on the authenticity
of the audio is conducted by quantifying the frequency variations
of the VCO output. The performance of the proposed method
is evaluated on digitally edited and original audio signals, with
promising results (achieving an accuracy of 96%).

Keywords Audio authenticity, Phase-Locked Loop (PLL),
Electric Network Frequency (ENF).

I. INTRODUCTION

Due to the increment of technology availability in the

recent decades, editing digital audio has became a very simple

task [1]. Besides this, if the edition is carried out carefully, it

is hard to determine if the audio has been modified or not,

even for trained ears. In some cases (e.g. when the recording

device is connected to an electrical outlet), the power grid

signal is usually embedded in the recorded signals. In recent

years, several works focusing on detecting electric network

frequency (ENF) discontinuities for audio authentication have

been carried out. Most existing research involve the Discrete

Fourier Transform (DFT) or spectral distances for extracting

the phase changes of the ENF [2]-[4]. In this work, we propose

an alternative method based on tracking the ENF with a PLL.

The method is specially tailored for the analysis of audio

signals recorded with the presence of the power grid signal

(50 Hz or 60 Hz).

The rest of this paper is organized as follows. The next

section provides some basic background on the power grid

signal. Section III outlines the proposed approach for audio

authenticity. Section IV is devoted to detail the experiments

used to evaluate the proposed system, its results being also

presented in there. Concluding remarks are given in Section V.

II. THE ELECTRIC NETWORK FRECUENCY

Most of the power from a network comes from turbines

that drive alternating current generators; the rotating speed of

their turbines determines the ENF [5]. Standards adopted by

countries worldwide are either 50 Hz or 60 Hz ENF nominal

values. The system frequency will vary around the target,

50 Hz or 60 Hz, and the network operators have statutory

obligations to maintain the frequency within certain limits (in

the order of 0.5 Hz for developed regions [5]).

Any operating electrical equipment connected to the power

grid produces an electromagnetic field. For that reason, the

power grid signal may be embedded also in some recorded

signals when the device is connected to an electrical outlet.

Alternatively, ENF contamination can be produced as a result

of the presence of electromagnetic fields emanating from

recorder power supply components such as transformers [6].

Assuming that the phase of the ENF varies within narrow

limits, this work focuses on estimating abrupt changes in the

ENF phase in order to determine whether or not the audio

signal has been tampered with.

III. PROPOSED APPROACH

The proposed system is depicted in the diagram of Figure 1.

The first step is to preprocess the input signal and obtain the

correspondent ENF tone. Later, as in a typical Phase-Locked

Loop configuration, a Voltage-Controlled-Generator (VCO)

produces a synthetic signal similar to the input. This voltage

is then compared with the loop input. The differences between

these two signals are used in order to correct the VCO-signal,

making it closer to the ENF. In this sense, if the estimated

ENF has strong phase variations, there will be a big difference

between the loop input and the generated signals. This effect

is reflected as a change in the VCO frequency value. Finally,

the output of the system is the VCO frequency. The automatic

decision about the audio authenticity is carried out comparing

this frequency with an estimated threshold U. Each stage of

the system is explained in the following subsections.

A. Preprocessing

Firstly, the signal was filtered with a low-pass filter of

bandwidth 500 Hz and down-sampled to fs = 1000 Hz in

order to reduce the computational cost. This down-sampled

signal is later filtered with a sharp band-pass filter (0.6 Hz
bandwidth around the nominal ENF) so as to obtain the ENF.

The ENF has frequency and amplitude variations associated

to the characteristics of the local power grid. These changes
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Fig. 1. Block diagram of the proposed system.

can introduce a certain degree of uncertainty, as the differences

estimated by the PLL could be due to amplitude changes rather

than phase changes. In order to have a correct performance of

the PLL, a normalizing process is applied to the signal in order

to have a constant amplitude. This normalization is carried out

by dividing the signal by an estimation of its envelope (see

Figure 2). The envelope of the signal is calculated using a full

wave rectifier and a low-pass filter. A second order Chebyshev

Filter is used due to its steep roll-off. The cut-off frequency

of the LPF was set to 100 Hz.
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Fig. 2. Example of amplitude normalization using the envelope of the signal:
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B. The loop

The same low-pass filter is incorporated so as to smooth

the error signal. In order to detect phase discontinuities of

the ENF, the obtained signal after preprocessing is compared

with a synthetic signal generated with a Voltage-Controlled-

Generator (VCO). In addition, two pathways are included in

the loop for controlling the update rate of the VCO parameters

and the VCO output frequency (see Figure 1). Each block is

detailed in the following.

1) VCO: In this case, the VCO was implemented with

a typical sine-cosine generator [8], as shown in Figure 3.

Recurrence equations of this system are:

y1[n] = Cy2[n− 1] +Dy1[n− 1], (1)

y2[n] = By1[n− 1] +Ay2[n− 1]. (2)

In order to determine its parameters such that the system

behaves as a sine-cosine generator, unilateral Z-transforms
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Fig. 3. Sine-cosine generator used to implement VCO.

(Zu) were computed and the expressions of the system outputs

are given as:

Y1u
(z) =

(Cy[0]−Ay1[0])z
−1 + y1[0]

1− (A+D)z−1 + (AD −BC)z−2
, (3)

Y2u
(z) =

(By1[0]z
−1 −+y2[0]−Dy2[0]z

−1

1− (A+D)z−1 + (AD −BC)z−2
. (4)

The parameters were set as follows:

A = cos(ω0), B = −sin(ω0), C = sin(ω0), D = cos(ω0),

and the initial conditions as: y1[0] = 1 and y2[0] = 0.

With this choice of parameters, the inverse transform of

Equations (3) and (4) are, respectively:

y1[n] = cos(ω0n)u[n] and y2[n] = sin(ω0n)u[n],

where u[n] is the Heaviside step.

2) The Pathways: The first pathway is used to update the

VCO parameters (see ω0[n] in Figure 1). This is carried out

by using the difference between the VCO signal and the

normalized ENF to correct the frequency of the VCO, which,

in order to avoid sudden changes, has some inertia imposed

by a first order low-pass filter. The updating expression of this

pathway is given by:

ω0[n] = ω′

0
[n− 1]− αe[n], (5)

where ω0[n] is the VCO digital frequency at sample n, ω′

0
[n] is

an auxiliary frequency (explained next), α is a constant which

value was set to 50/fs (with fs the sampling frequency),

and e[n] is the phase mismatch of the PLL. Equation (5)

quickly updates the VCO parameters such that the VCO output

frequency tracks the input signal frequency properly.

This updating process could generate strong oscillations

around the input frequency and therefore loop instabilities.



In order to avoid this effect, a second pathway is introduced

(see ω′

0
[n] in Figure 1). This second updating expression is:

ω′

0
[n] = ω′

0
[n− 1]− βe[n], (6)

which is similar to Equation (5) but ω′

0
evolution is slower.

Constant β was set to α/100. The goal of this pathway is to

smooth transitions in the output frequency of the VCO.

C. Postprocessing

In order to determine the audio authenticity automatically,

the VCO output frequency is compared with a threshold,

as explained in Section III-D. To ensure that this threshold

performs properly, a postprocessing stage was included. As

shown in Figure 4, the ENF presents variations that could be

considered as phase discontinuity, a false detection. This kind

of variation can appear when the ENF component is interfered

with another signal, such as with a click. This produces an

abrupt variation of the ENF which the algorithm detects as

a false positive. Those variations present a typical pattern:

they have positive and negative components with respect to

the mean value. Because of interference, the PLL looses the

phase of the signal, measuring an offset. As the actual phase

of the signal did not change, in order to lock back into it,

a phase difference with the opposite sign appears later. This

does not happen in a true positive case as the PLL will make

a single change in order to be locked to the new phase.
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Fig. 4. PLL output in case of false a positive.
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Fig. 5. Result with postprocessing.

To postprocess the signal, a moving average (MA) filter

was employed with a window length corresponding to 500ms.

Therefore, if the signal has positive and negative variations,

its amplitude is decreased by the MA filter more than if the

signal has only positive or only negative variations. Figure 5

shows the filter result for the two cases. In the upper plot, there

is a false negative while, in the bottom plot, a true positive

is shown. The results comparing the system performance with

and without postprocessing are presented in Section IV.

D. Automatic decision

In order to discriminate between edited and original signals,

it is necessary to characterize abrupt changes in the ENF. As a

final step of the proposed system, the VCO output frequency is

compared to a threshold in order to determine automatically

if the audio has been edited or not. This threshold may be

computed taking into account the Equal Error Ratio (EER), as

in previous works [3], [9].

The algorithm was tested with two databases, CARIOCA [3]

and AHUMADA [7]. Each database has 200 audio signals,

half of those are original and the other half are edited. In

Figures 6 and 7, the Detection Error Tradeoff (DET) curves

for each database are shown.

As shown in the DET curves, two threshold values were

selected in order to compare system results with and without

postprocessing. In case of CARIOCA database, the postpro-

cessing improves the EER from 5% to 4%; conversely, in

AHUMADA database, there is no significant difference. The

experimental results are presented in Section IV.

2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

threshold = 0.31
threshold = 0.165

False Negative Probability

F
a

ls
e

 P
o

s
it
iv

e
 P

ro
b

a
b

ili
ty DET curve AHUMADA

 

 

with post−processing

without post−processing

Fig. 6. Threshold value selection using EER (in %) in AHUMADA database.
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Fig. 7. Threshold value selection using EER (in %) in CARIOCA database.

IV. EXPERIMENTS AND RESULTS

As before mentioned, the system was trained with two

databases (AHUMADA and CARIOCA) and an EER thresh-

old was established for each one. To test the generalization



ability of the system, each threshold was considered for

testing the other database, in a Cross Validation (CV) scheme.

The results are presented in Table I, comparing the system

performance with and without postprocessing. An important

issue to highlight is that the FP and FN probabilities presented

in Table I are different from those shown in Figures 6 and 7.

In that case, each FN and FP probability were computed for

each value of threshold, which was varying to form the DET

curve (the EER being one point of the curve, useful to have

a glimpse of the system performance but not necessarily the

operating point to be chosen in every implementation).

As shown in Table I, the algorithm performance achieves

96% of correct detections in CARIOCA database and 89% in

AHUMADA. This difference could be explained taking into

account that AHUMADA database contains about 10 (5% of

the corpus) distorted signals [9].

TABLE I
ALGORITHM ERROR PROBABILITY IN A CV SCHEME

Carioca train Ahumada train
Ahumada test Carioca test

w/o pos w/ pos w/o pos w/ pos
FP (%) 8.5 8.5 2.0 0.5
FN (%) 2.5 2.5 2.5 3.5

Error (%) 11.0 11.0 4.5 4.0

It would be interesting to know the robustness of this

algorithm in the presence of noise and nonlinear distortion.

For this purpose two extra experiments were carried out.

Firstly, the algorithm was tested with clipped signals in 0.5%

of samples and secondly with the signals contaminated with

white noise (SNR of 10 dB, assuming the original recordings

as clean signals). In this case the point of operation is the

EER in each database. The results are presented in Table II.

As shown in this Table, when compared to previous results,

the EER has improved by 1.5% for the clean Ahumada corpus

(from 6% in [3] to 4.5% here) and by 2% for the clean Carioca

Corpus (from 4% in [9] to 2% here).

TABLE II
ALGORITHM ERROR PROBABILITY: EFFECT OF CLIPPING (0.5%) AND

WHITE GAUSSIAN NOISE (SNR 10dB)

Ahumada Carioca

ori clipp noise ori clipp noise
FP (%) 4.5 27.5 49 2 33.5 50
FN (%) 4.5 2.5 0.5 2 0.5 0

Error (%) 9 30 49.5 4 34 50

V. CONCLUSION

A novel PLL based method for determining audio authen-

ticity was proposed in this work; several experiments were

conducted in order to evaluating its generalization ability.

Two different databases containing both original and edited

signals were used to show that the method is able to pinpoint

ENF discontinuities with good accuracy, achieving 2% EER

in CARIOCA database and 4.5% EER for the AHUMADA

database. This performance is in line with those attained in

previous works [3], [9], with a mean improvement of 1.75%

of the EER.

A cross validation scheme was carried out, obtaining a

96% of correct detections when training with AHUMADA

and testing with CARIOCA. When training with CARIOCA

and testing with AHUMADA, a 89% of correct detections is

performed. These experiments yielded promising results that

show the advantages of the proposed method.

Additional tests were conducted to estimate the system

performance in presence of noise and clipping: the signals

were distorted with amplitude clipping (0.5%) and corrupted

with additive white gaussian noise (SNR 10dB). The results

obtained show that these distortions severely affect the per-

formance of the proposed method. Another important issue to

take into account is related to pathological cases (e.g. when

the edition length is an integer number of ENF cycles); in

those cases, it is not possible to employ any ENF-based audio

authenticity method.

As future work, a larger database could be formed with each

signal containing the time information of each edition, helpful

to determine if the algorithm recognizes a real discontinuity

or if it detects spurious ENF variations. Moreover, a combined

approach—PLL, phase, and instantaneous frequency—is a

natural candidate for future research.
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